Согласование сопротивлений. Как влияет сопротивление усилителя на звук? Как измерить выходное сопротивление усилителя

Обычно вопросу согласования сопротивлений уделяют недостаточно внимания. Цель этого раздела состоит в том, чтобы описать в общих чертах принципы и практику согласования сопротивлений.

Входное сопротивление.У любого электрического устройства, для работы которого требуется сигнал, имеется входное сопротивление. Точно так же, как и любое другое сопротивление (в частности, сопротивление в цепях постоянного тока), входное сопротивление устройства есть мера тока, текущего по входной цепи, когда ко входу приложено определенное напряжение.

Например, входное сопротивление 12-вольтовой осветительной лампы, потребляющей 0,5 А, равно 12/0,5 = 24 Ом. Лампа является простым примером сопротивления, так как нам известно, что в ней нет ничего, кроме нити накаливания. С этой точки зрения входное сопротивление такой схемы, как усилитель на биполярном транзисторе, может казаться чем-то более сложным. На первый взгляд, наличие в схеме конденсаторов, резисторов и полупроводниковых p-n переходов делает определение входного сопротивления трудным. Однако любую входную цепь, какой бы сложной она не была, можно представить в виде простого импеданса, как это сделано на рис.2.18. Если UВХ - напряжение переменного входного сигнала, а IВХ - переменный ток, текущий по входной цепи, то входной импеданс равен ZВХ = UВХ/ IВХ[Ом].

У большинства схем входной импеданс имеет резистивный (омический) характер в широком диапазоне частот, в пределах которого сдвиг по фазе между входным напряжением и входным током пренебрежимо мал. В этом случае входная цепь выглядит так, как показано на рис. 2.19, справедлив закон Ома и нет необходимости в алгебре комплексных чисел и в векторных диаграммах, применяемых к цепям с реактивными элементами.

Рис.2.18. Схема с парой входных клемм, иллюстрирующая понятие входного импедансаZВХ

Важно отметить, однако, что из омического характера входного импеданса не обязательно следует возможность его измерения на постоянном токе; на пути входного сигнала могут находиться реактивные компоненты (например, разделительный конденсатор), которые несущественны в отношении переменного сигнала на средних частотах, но не позволяют проводить измерения во входной цели на постоянном токе. Исходя из сказанного, при дальнейшем рассмотрении будем считать, что импеданс носит чисто омический характер и Z=R.

Измерение входного сопротивления. Напряжение на входе легко измерить с помощью осциллографа или вольтметра переменного напряжения. Однако так же легко измерить переменный ток нельзя, в частности, в случае, когда входное сопротивление велико. Самый подходящий способ измерения входного сопротивления показан на рис.2.19.

Рис.2.19. Измерение входного сопротивления

Резистор с известным сопротивлением R включают между генератором и входом исследуемой схемы. Затем с помощью осциллографа или вольтметра переменного напряжения с высокоомным входом измеряются напряжения U1 и U2по обе стороны резистора R. Если IВХ - переменный входной ток, то, согласно закону Ома, на резисторе падает напряжение, равное U1 - U2 = RIВХ. Отсюда I ВХ = (U1 - U2)/R, R ВХ = U2 / R. Следовательно Если исследуемая схема является усилителем, то часто удобнее всего определять U1 и U2, выполняя измерения на выходе усилителя: U1измеряется при непосредственном подключении генератора ко входу, а U2 - при последовательном включении со входом резистора R. Поскольку в выражении для RВХ присутствует только отношение U1/U2, коэффициент усиления не играет никакой роли. Предполагается, что при выполнении этих измерений напряжение на выходе генератора остается неизменным. Вот очень простой пример: если включение последовательно со входом резистора с сопротивлением 10 кОм вызывает уменьшение напряжения на выходе усилителя наполовину, то U1 /U2 = 2 и RВХ = 10 кОм.

Выходное сопротивление. Пример, дающий представление о выходном сопротивлении, такой: свет фар автомобиля чуть тускнеет при работе стартера. Большой ток, потребляемый стартером, вызывает падение напряжения внутри аккумулятора, в результате чего напряжение на его клеммах уменьшается и свет фар становится менее ярким. Это падение напряжения происходит на выходном сопротивлении аккумулятора, возможно, более известном как внутреннее сопротивление или сопротивление источника.

Расширим это представление, распространив его на все выходные цепи, включая цепи постоянного и переменного тока, у которых всегда имеется определенное выходное сопротивление, соединенное с источником напряжения. В применимости такого простого описания даже к самым сложным схемам убеждает правило, говорящее о том, что любую цепь с сопротивлениями и источниками, имеющую две выходные клеммы, можно заменить на последовательно включенные одно сопротивление и один источник. Здесь под словом «источник» нужно понимать идеальный компонент, вырабатывающий напряжение и продолжающий поддерживать это напряжение неизменным даже тогда, когда от него потребляется ток. Описание выходной цепи показано на рис. 2.20, где RВЫХ - выходной импеданс, а U - выходное напряжение холостого хода, то есть напряжение на выходе разомкнутой цепи.

Рис.2.20. Эквивалентная схема выходной цепи

Обсуждая вопрос о входном и выходном сопротивлении, уместно обратить внимание на впервые появляющееся понятие: эквивалентная схема. Все схемы на рис. 2.18, 2.19 и 2.20 являются эквивалентными схемами. В них не обязательно отражены реальные компоненты и соединения в рассматриваемых устройствах; эти схемы являются удобным способом представления, который полезен для понимания того, как ведет себя то или иное устройство.

Рис. 2.20, показывает, что в случае, когда к выходным клеммам подключается резистор или входные клеммы другого устройства, часть напряжения источника U падает на внутреннем сопротивлении источника.

Измерение выходного сопротивления. Простой метод измерения выходного сопротивления следует из схемы на рис.2.20. Если выходные клеммы замкнуть накоротко, изменить текущий при этом ток короткого замыкания IКЗ и учесть, что он совпадает с током, текущим по сопротивлению RВЫХ в результате приложения к нему напряжения U, то получим: RВЫХ = U/IКЗ. Напряжение U, поставляемое в схему источником, измеряется на выходных клеммах в режиме «холостого хода», то есть при пренебрежимо малом выходном токе. Таким образом, выходное сопротивление легко можно получить как отношение напряжения холостого хода к току короткого замыкания.

Рассмотрев этот принципиальный метод определения выходного сопротивления, необходимо сказать, что на этом пути имеются препятствия, присущие измерению выходного тока короткого замыкания в большинстве случаев. Обычно при коротком замыкании нарушаются условия функционирования схемы и нельзя получить достоверные результаты; в отдельных случаях могут выйти из строя те или иные компоненты, не выдержав ненормально большую нагрузку. Простая иллюстрация неприменимости метода короткого замыкания: попробуйте измерить выходное сопротивление сети переменного тока! Несмотря на эти недостатки с практической точки зрения, использование этого метода оправдано при теоретическом выводе выходного сопротивления схемы и в дальнейшем он применяется в этой главе.

Практический способ измерения выходного сопротивления показан на рис.2.21. Здесь выходное напряжение холостого хода измеряется вольтметром или осциллографом с высокоомным входом, а затем выходные клеммы шунтируются нагрузкой с известным сопротивлением R. Уменьшенное выходное напряжение при подключенной нагрузке непосредственно определяется тем же измерительным прибором. Значение RВЫХ можно вычислить как отношение величины, на которую упало напряжение, к выходному току.

Рис.2.21. Измерение выходного сопротивления с использованием шунтирующего резистора

Если U - это выходное напряжение холостого хода, а U1- выходное напряжение на нагрузке R, то падение напряжения на RВЫХпри наличии нагрузки равно U- U1, выходной ток при наличии нагрузки равен U1/R, поэтому RВЫХ= R(U - U1) /U1 Согласование сопротивлений для оптимальной передачи напряжения. В большинстве электронных схем рассматриваются сигналы, являющиеся напряжениями. В большинстве случаев, когда подключается одна часть схемы к другой, необходимо в максимальной степени передать напряжение при минимуме потерь. В этом и состоит требование максимальной передачи напряжения, обычно выполняющееся при согласовании сопротивлений. Рассмотрим с учетом этого критерия принцип согласования сопротивлений.

На рис.2.22 показаны два блока, соединенные друг с другом: для оптимальной передачи напряжения нужно, чтобы UВХ было почти равно U, насколько это возможно. Напряжение UВХ равно: UВХ = URВХ / RВЫХ + RВХ и UВХ≈U, RВХ >> RВЫХ

Рис.2.22. Иллюстрация согласования сопротивлений между двумя устройствами

Другими словами, для возможно лучшей передачи напряжения от одной схемы к другой выходное сопротивление первой схемы должно быть много меньше, чем входное сопротивление второй схемы; как правило, нужно, чтобы RВХ> 10RВЫХ. Именно по этой причине применяемые для тестирования приборы, такие как генератор, проектируются с малым выходным сопротивлением (типичное значение < 100 Ом). С другой стороны, осциллограф, предназначенный для наблюдения напряжений в испытываемой схеме, делается с большим входным сопротивлением (типичное значение > 1 МОм).

Рис.2.23. Зависимость выходного напряжения схемы от сопротивления нагрузки

Если условия оптимального согласования сопротивлений не соблюдаются и сигнал поступает на вход схемы с входным сопротивлением, сравнимым с выходным сопротивлением источника, то в самом общем случае будут происходить просто потери напряжения. Такая ситуация возникает, когда два усилительных каскада на биполярных транзисторах, подобные изображенному на рис. 11.5, соединены один вслед за другим (каскадно). Как входное, так и выходное сопротивление у такого каскада на биполярном транзисторе одного порядка (обычно несколько тысяч Ом), и это значит, что около 50% напряжения сигнала теряется на связи между каскадами. С другой стороны, усилитель на полевом транзисторе (рис.11.13) много лучше с точки зрения согласования сопротивлений: у него очень большое входное сопротивление и среднее по величине выходное сопротивление; при соединении таких каскадов один за другим потери сигнала ничтожно малы.

Имеются один или два случая, когда согласование сопротивлений нуждается в особом внимании, так как слишком малое сопротивление нагрузки влияет не только на коэффициент усиления напряжения, но также и на частотную характеристику. Это происходит, когда выходной импеданс источника не является чисто резистивным, а наоборот, представляет собой реактивное сопротивление, и поэтому частотная характеристика изменяется. Простым примером служит конденсаторный микрофон, у которого выходной импеданс выражается не в омах, а в пикофарадах, с типичным значением в районе 50 пФ. Для хорошего воспроизведения низких частот нужно, чтобы входное сопротивление усилителя было большим по сравнению с реактивным сопротивлением емкости 50 пФ на частотах вплоть до 20 Гц. Практически для этого требуется, чтобы входное сопротивление было порядка 200 МОм, что обычно обеспечивается усилителем на полевом транзисторе, смонтированным в корпусе микрофона.

Согласование сопротивлений для оптимальной передачи мощности. Хотя, как правило, критерием при согласовании сопротивлений служит максимальный перенос напряжения, бывают случаи, когда требуется передать максимум мощности. Не приводя математических расчетов, сообщим, что для схемы 2.22 максимум мощности в RВХдостигается при RВХ = RВЫХ. Этот результат известен как теорема о максимальной мощности: максимум мощности передается от источника в нагрузку, когда сопротивление нагрузки равно выходному сопротивление источника. Эта теорема справедлива не только для резистивных компонентов, но и для комплексных компонентов ZВХ и ZВЫХ. В этом случае требуется, чтобы помимо условия RВХ = RВЫХ, выполнялось также условие XВХ = -XВЫХ, то есть при емкостном характере одного импеданса другой импеданс должен иметь индуктивный характер.

Согласование сопротивлений для оптимальной передачи тока. Иногда требуется согласование сопротивлений, обеспечивающее максимальный ток во входной цепи. Обращаясь снова к рис. 2.22, можно увидеть, что максимум входного тока IВХ достигается в том случае, когда полное сопротивление в цепи выбирается возможно меньшим. Поэтому, при фиксированном RВЫХ следует стремиться к возможно меньшему значению RВХ. Эта довольно нестандартная ситуация прямо противоположна обычному случаю, когда требуется передавать напряжение.

На рисунке изображена схема двухтактного усилителя звуковой частоты, в котором каждый полупериод сигнала усиливается отдельным каскадом и выходной сигнал суммируется на нагрузке. Так как выходы транзисторов не соединяются по постоянному току, то искажения типа "ступенька" (Crossover distortion), относящиеся к моментам перехода сигнала через нуль практически устранены. Недостаток такого усилителя - высокие требования к выходным конденсаторам С2 и С3, ёмкости которых должны быть равны, иначе форма выходного сигнала будет несимметричной.

Резистор R1 эмулирует выходное сопротивление источника сигнала, дело в том что измерять выходное сопротивление необходимо при том сопротивлении источника, при котором схема и будет эксплуатироваться. Точно так же и при измерении входного сопротивления схему необходимо нагрузить сопротивлением рабочей нагрузки.

В этой схеме используются биполярные транзисторы типа КТ503А и КТ502А, модели которых не входят в стандартную поставку программы LTSpice. Модели этих транзисторов можно скачать . Что бы транзисторы КТ503А и КТ502А были доступны в LTSpice, необходимо добавить их модели в текстовый файл с со стандартными моделями транзисторов, находящийся в той директории, куда установлен LTspice, например:
c:\LTspiceIV\lib\cmp\standard.bjt
Естественно, все манипуляции с файлами программы необходимо проводить когда программа не запущена. Как добавлять компоненты на схему было описано ранее .

Теперь для того, что бы добавить необходимый транзистор, нажимаем клавишу F2 , и в появившемся меню следует выбрать npn , и установить значок транзистора на схему:

И закрыть все окна (кнопка ОК ).

Кроме транзисторов понадобятся ещё источники тока и напряжения (клавиша F2 --> корневой каталог - и далее выбрать voltage или current ):

Поместить выбранный символ на схему, нажать правую кнопку мыши и в появившемся окне выбрать Advanced :

И в появившемся окне ввести амплитуду переменного сигнала (AC Amplitude ), равную единице:

Точно так же поступить и с источником тока, только амплитуду переменного сигнала AC Amplitude следует выбрать близкой к бесконечности, что бы параметры источника не влияли на расчёт:

На схеме значение резистора R1 указано в фигурных скобках - {R} . Это сделано для того, что бы сопротивление этого резистора можно было автоматически изменять. Для этого необходимо на схему поместить две Spice директивы (нажав клавишу S )
.param R=100
и
:

Убедитесь, что переключатель SPICE directive включён.

Теперь нужно ввести параметры расчёта. В меню Simulate --> Edit Simulation Cmd следует выбрать AC Analysis (анализ малосигнальных частотных характеристик схемы) и ввести вот такие параметры моделирования:

Параметры .ac oct 100 100 100k указывают на то, что расчёт будет идти начинаясь с частоты 100 Гц по 100 кГц, точность расчёта - 100 точек на октаву. Теперь можно запустить симуляцию.

В появившемся пустом окне с результатами расчётов нажать правую клавишу мыши и выбрать пункт Add Trace (или можно нажать комбинацию клавиш Ctrl+A ) и ввести выражение V(out)/I(I1) (т.е. напряжение в точке out делённое на ток источника I1 ):

Теперь в окне расчётов появятся результаты моделирования:

В правой части этого окна находится шкала фазовых характеристик, они нам не нужны, поэтому кликнув по этой шкале левой кнопкой мыши, вызовем окно настройки шкалы, в котором нажатием на кнопку Don"t plot phase фазовые характеристики будут удалены из расчёта:

Аналогично вызвав окно настройки левой части шкалы, указать в этом окне тип диаграммы - Боде (Bode ) и её вид - линейный (Linear ):

Окно с результатами расчётов примет такой вид:

Теперь шкала слева отображает выходное сопротивление усилителя при разных значениях входного сопротивления источника сигнала. Для того, что бы каждый раз не настраивать окно вывода результатов, то можно записать в файл параметры окна - когда окно будет находиться в фокусе, из меню File выбрать Save Plot Setting , настройки сохранятся в файле с расширением .plt . Имя этого файла по умолчанию соответствует имени файла симуляции, содержимое файла .plt примерно такое:

{ Npanes: 1 { traces: 1 {2,0,"V(out)/I(I1)"} X: ("K",0,100,0,100000) Y: (" ",1,4.9,0.7,12.6) Y: (" ",0,120,8,200) Log: 1 0 0 GridStyle: 1 PltMag: 1 } }

Та SPICE директива, что была задана ранее, .step param R LIST 1 10 100 1K ступенчато изменяет сопротивление резистора R1, в данном случае это 4 значения 1, 10, 100 Ом и 1 кОм. Поэтому в окне результата расчёта выводятся четыре кривые. Эту директиву можно заменить другой, например, директива .step param R 1 100 20 будет производить расчёт в диапазоне с 1 по 100 Ом с шагом 20.

Что бы узнать, какая кривая к какому шагу относится, нужно вызвать меню правой кнопкой мыши и нажать Select Steps , где выбрать один или несколько шагов, которые будут отображаться на графике:

Файл с вышеописанной схемой усилителя можно скачать .

Измерение входного сопротивления усилителя

Изменим немного схему, удалив из неё источник тока I1 и включив вместо него резистор R1 , а также добавим метку IN (клавиша F4 ):

В директиве .step param R LIST 100 1K 10K изменены параметры списка, теперь сопротивление R1 будет равно 100, 1000 и 1 кОм. Запустив вычисления и настроив окно вывода результатов точно также, как описывалось выше и используя выражение V(IN)/I(V2) , получим графики входных сопротивлений усилителя при разных сопротивлениях нагрузки:

Из результатов расчётов видно, что для сопротивления нагрузки 100 Ом входное сопротивление усилителя будет равно 6,06 кОм, для 1 кОм - 13,36 кОм, и для 10 кОм - 15,22 кОм.

Содержимое .plt файла будет примерно таким:

{ Npanes: 1 { traces: 1 {2,0,"V(IN)/I(V2)"} X: ("K",0,100,0,100000) Y: ("K",1,5400,900,15300) Y: (" ",1,172.9,0.7,181.3) Log: 1 0 0 GridStyle: 1 PltMag: 1 } }

Файл с изменённой схемой можно скачать .

Проверим полученный результат. Для этого добавим метку Vac и нагрузим усилитель на сопротивление 100 Ом, зададим резистору R1 величину сопротивления, полученного из предыдущего расчёта (6,06 кОм):

А так же изменим параметры источника сигнала V2 , установив амплитуду синусоидального сигнала 1 В и частоту 1 кГц:

Изменим режим моделирования на Transient (анализа переходных процессов) с параметрами .tran 0 0.1 0.095 0.0001 :

И в окне расчётов получим синусоиды напряжений на источнике сигнала и на входе усилителя, установив щупы на метки Vac и IN :

Как видно из графиков, амплитуда сигнала на входе усилителя IN в два раза меньше, чем амплитуда источника сигнала Vac , следовательно, входное сопротивление усилителя равно сопротивлению резистора R1.

Последнюю схему можно скачать

(О СНИЖЕНИИ ИНТЕРМОДУЛЯЦИОННЫХ ИСКАЖЕНИЙ И ПРИЗВУКОВ В ГРОМКОГОВОРИТЕЛЯХ)

Разницу в звучании громкоговорителей при работе с различными УМЗЧ, в первую очередь, замечают, сравнивая ламповые и транзисторные усилители: спектр их гармонических искажений часто существенно отличается. Иногда заметные отличия бывают и среди усилителей одной и той же группы. Например, в одном из аудиожурналов оценки, данные ламповым УМЗЧ мощностью 12 и 50 Вт, склонялись в пользу менее мощного. Или оценка была необъективной?

Как нам кажется, автор статьи доказательно объясняет одну из мистических причин возникновения в громкоговорителях переходных и интермодуляционных искажений, создающих заметную разницу в звучании при работе с различными УМЗЧ. Он предлагает также доступные методы существенного снижения искажений громкоговорителей, которые достаточно просто реализуются с применением современной элементной базы.

В настоящее время считается общепризнанным, что одним из требований к усилителю мощности является обеспечение неизменности его выходного напряжения при изменении сопротивления нагрузки. Иными словами, выходное сопротивление УМЗЧ должно быть невелико по сравнению с нагрузочным, составляя не более 1/10,1/1000 от модуля сопротивления (импеданса) нагрузки |Z н |. Эта точка зрения отражена в многочисленных стандартах и рекомендациях, а также в литературе. Специально введен даже такой параметр, как коэффициент демпфирования - K d (или демпинг-фактор), равный отношению номинального сопротивления нагрузки к выходному сопротивлению усилителя R вых УМ. Так, при номинальном сопротивлении нагрузки, равном 4 Ом, и выходном сопротивлении усилителя 0,05 Ом K d будет равен 80. Действующие ныне стандарты на аппаратуру HiFi требуют, чтобы значение коэффициента демпфирования у высококачественных усилителей было бы не менее 20 (а рекомендуется - не менее 100). Для большинства транзисторных усилителей, имеющихся в продаже, K d превышает 200.
Доводы в пользу малого R вых УМ (и соответственно высокого K d) общеизвестны: это обеспечение взаимозаменяемости усилителей и акустических систем, получение эффективного и предсказуемого демпфирования основного (низкочастотного) резонанса громкоговорителя, а также удобство измерения и сопоставления характеристик усилителей. Однако, несмотря на правомерность и обоснованность вышеприведенных соображений, вывод о необходимости такого соотношения, по мнению автора, принципиально ошибочен !

Всё дело в том, что этот вывод делается без учета физики работы электродинамических головок громкоговорителей (ГГ). Подавляющее большинство разработчиков усилителей искренне полагает, что всё, что от них требуется - это выдать напряжение требуемой величины на заданном сопротивлении нагрузки с возможно меньшими искажениями. Разработчики громкоговорителей, в свою очередь, вроде бы должны исходить из того, что их изделия будут питаться от усилителей с пренебрежимо малым выходным сопротивлением. Казалось бы, все просто и ясно - какие тут могут быть вопросы?

Тем не менее, вопросы, и очень серьёзные, имеются. Главным из них является вопрос о величине интермодуляционных искажений , вносимых ГГ при работе ее от усилителя с пренебрежимо малым внутренним сопротивлением (источника напряжения или источника ЭДС).

«Какое отношение к этому может иметь выходное сопротивление усилителя? Не морочьте мне голову!» - скажет читатель. - И ошибётся. Имеет, и самое прямое, несмотря на то, что факт этой зависимости упоминается крайне редко. Во всяком случае, не обнаружено современных работ, в которых бы рассматривалось это влияние на все параметры сквозного электроакустического тракта - от напряжения на входе усилителя до звуковых колебаний. При рассмотрении этой темы ранее почему-то ограничивались анализом поведения ГГ вблизи основного резонанса на нижних частотах, тогда как не менее интересное происходит на заметно более высоких частотах - на пару октав выше резонансной частоты.

Для восполнения этого пробела и предназначена эта статья. Надо сказать, что для повышения доступности изложение весьма упрощено и схематизировано, поэтому ряд «тонких» вопросов остался нерассмотренным. Итак, чтобы понять, как выходное сопротивление УМЗЧ влияет на интермодуляционные искажения в громкоговорителях, надо вспомнить, какова физика излучения звука диффузором ГГ.

Ниже частоты основного резонанса при подаче синусоидального напряжения сигнала на обмотку звуковой катушки ГГ амплитуда смещения её диффузора определяется упругим противодействием подвеса (или сжимаемого в закрытом ящике воздуха) и почти не зависит от частоты сигнала. Работа ГГ в этом режиме характеризуется большими искажениями и очень низкой отдачей полезного акустического сигнала (очень низким КПД).

На частоте основного резонанса масса диффузора вместе с колеблющейся массой воздуха и упругостью подвеса образуют колебательную систему, аналогичную грузику на пружинке. КПД излучения в этой области частот близок к максимальному для данной ГГ.

Выше частоты основного резонанса силы инерции диффузора вместе с колеблющейся массой воздуха оказываются большими, чем силы упругости подвеса, поэтому смещение диффузора оказывается обратно пропорциональным квадрату частоты. Однако ускорение диффузора при этом теоретически не зависит от частоты, что и обеспечивает равномерность АЧХ по звуковому давлению. Следовательно, для обеспечения равномерности АЧХ ГГ на частотах выше частоты основного резонанса к диффузору со стороны звуковой катушки необходимо прикладывать силу постоянной амплитуды, как это следует из второго закона Ньютона (F=m*a).

Сила же, действующая на диффузор со стороны звуковой катушки, пропорциональна току в ней. При подключении ГГ к источнику напряжения U ток I в звуковой катушке на каждой частоте определяется из закона Ома I(f)=U/Z г (f), где Z г (f) - зависящее от частоты комплексное сопротивление звуковой катушки. Оно определяется преимущественно тремя величинами: активным сопротивлением звуковой катушки R г (измеряемым омметром), индуктивностью L г. На ток влияет также и противо-ЭДС, возникающая при перемещении звуковой катушки в магнитном поле и пропорциональная скорости перемещения.

На частотах заметно выше основного резонанса величиной противо-ЭДС можно пренебречь, поскольку диффузор со звуковой катушкой просто не успевают разогнаться за половину периода частоты сигнала. Поэтому зависимость Z г (f) выше частоты основного резонанса определяется в основном величинами R г и L г

Так вот, ни сопротивление R г, ни индуктивность L г особым постоянством не отличаются. Сопротивление звуковой катушки сильно зависит от температуры (ТКС меди около +0,35%/ о С), а температура звуковой катушки малогабаритных среднечастотных ГГ при нормальной работе изменяется на величину в 30...50 о С и причем весьма быстро - за десятки миллисекунд и менее. Соответственно, сопротивление звуковой катушки, а следовательно, и ток через неё, и звуковое давление при неизменном приложенном напряжении изменяются на 10...15%, создавая интермодуляционные искажения соответствующей величины (в низкочастотных ГГ, тепловая инерционность которых велика, разогрев звуковой катушки вызывает эффект тепловой компрессии сигнала).

Изменения индуктивности ещё более сложны. Амплитуда и фаза тока через звуковую катушку на частотах заметно выше резонансной в значительной мере определяются величиной индуктивности. А она очень сильно зависит от положения звуковой катушки в зазоре: при нормальной амплитуде смещения для частот, лишь немногим больших, нежели частота основного резонанса, индуктивность изменяется на 15...40% у различных ГГ. Соответственно при номинальной мощности, подводимой к громкоговорителю, интермодуляционные искажения могут достигать 10...25%.

Сказанное выше иллюстрируется фотографией осциллограмм звукового давления, снятых на одной из лучших отечественных среднечастотных ГГ - 5ГДШ-5-4. Структурная схема измерительной установки приведена на рисунке.

В качестве источника двухтонального сигнала применены пара генераторов и два усилителя, между выходами которых подключена испытуемая ГГ, установленная на акустическом экране площадью около 1 м 2 . Два отдельных усилителя с большим запасом по мощности (400 Вт) использованы с целью избежать образования интермодуляционных искажений при прохождении двухтонового сигнала через усилительный тракт. Звуковое давление, развиваемое головкой, воспринималось ленточным электродинамическим микрофоном, нелинейные искажения которого составляют величину менее -66дБ при уровне звукового давления 130 дБ. Звуковое давление такого громкоговорителя в этом эксперименте составляло примерно 96 дБ, та что искажениями микрофона при данных условиях можно было пренебречь.

Как видно на осциллограммах на экране верхнего осциллографа (верхняя - без фильтрации, нижняя - после фильтрации ФВЧ), модуляция сигнала с частотой 4 кГц под воздействием другого с частотой 300 Гц (при мощности на головке 2,5 Вт) превышает 20%. Это соответствует величине интермодуляционных искажений около 15%. Думается, нет нужды напоминать о том, что порог заметности продуктов интермодуляционных искажений лежит намного ниже одного процента, достигая в ряде случаев сотых долей процента. Понятно, что искажения УМЗЧ, если только они имеют «мягкий» характер, и не превышают нескольких сотых процента, просто неразличимы на фоне искажений в громкоговорителе, вызванных его работой от источника напряжения. Интермодуляционные продукты искажений разрушают прозрачность и детальность звучания - получается «каша», в которой отдельные инструменты и голоса слышны лишь изредка. Этот тип звучания наверняка хорошо знаком читателям (хорошим тестом на искажения может служить фонограмма детского хора).

Знатоки могут возразить, что для уменьшения непостоянства импеданса звуковой катушки существует множество способов: это и заполнение зазора охлаждающей магнитной жидкостью, и установка медных колпачков на керны магнитной системы, и тщательный подбор профиля керна и плотности намотки катушки, а также многое другое. Однако все эти методы, во-первых, не решают проблему в принципе, а во-вторых, ведут к усложнению и удорожанию производства ГГ, вследствие чего не находят полного применения даже в студийных громкоговорителях. Именно поэтому большинство среднечастотных и низкочастотных ГГ не имеет ни медных колпачков, ни магнитной жидкости (в таких ГГ при работе на полной мощности жидкость нередко выбрасывается из зазора).

Следовательно, питание ГГ от высокоомного источника сигнала (в пределе - от источника тока) является полезным и целесообразным способом снижения их интермодуляционных искажений, особенно при построении многополосных активных акустических систем. Демпфирование основного резонанса при этом приходится выполнять чисто акустическим путем, поскольку собственная акустическая добротность среднечастотных ГГ, как правило, значительно превышает единицу, достигая 4...8.

Любопытно, что именно такой режим «токового» питания ГГ имеет место в ламповых УМЗЧ с пентодным или тетродным выходом при неглубокой (менее 10 дБ) ООС, особенно при наличии местной ООС по току в виде сопротивления в цепи катода.

В процессе налаживания такого усилителя его искажения без общей ООС обычно оказываются в пределах 2,5% и уверенно заметны на слух при включении в разрыв контрольного тракта (метод сравнения с «прямым проводом»). Однако после подключения усилителя к громкоговорителю обнаруживается, что по мере увеличения глубины обратной связи звучание сначала улучшается, а затем происходит потеря его детальности и прозрачности. Особенно четко это заметно в многополосном усилителе, выходные каскады которого работают непосредственно на соответствующие головки громкоговорителей без каких-либо фильтров.

Причина этого, на первый взгляд, парадоксального явления в том, что при увеличении глубины ООС по напряжению выходное сопротивление усилителя резко снижается. Негативные последствия питания ГГ от УМЗЧ с малым выходным сопротивлением рассмотрены выше. В триодном усилителе выходное сопротивление, как правило, намного меньше, чем в пентодном или тетродном, а линейность до введения ООС выше, поэтому введение ООС по напряжению улучшает работу отдельно взятого усилителя, но вместе с тем ещё более ухудшает работу головки громкоговорителя. Как следствие, в результате введения ООС по выходному напряжению в триодный усилитель звук, действительно, может становиться хуже, несмотря на улучшение характеристик собственно усилителя! Этот эмпирически установленный факт служит неиссякаемой пищей для спекуляций на тему вреда от применения обратных связей в звуковых усилителях мощности, а также рассуждений об особой, ламповой прозрачности и естественности звучания. Однако из вышерассмотренных фактов со всей очевидностью следует, что дело не в наличии (или отсутствии) самой по себе ООС, а в результирующем выходном сопротивлении усилителя. Вот где «собака зарыта»!

Стоит сказать несколько слов об использовании отрицательного выходного сопротивления УМЗЧ. Да, положительная обратная связь (ПОС) по току помогает задемпфировать ГГ на частоте основного резонанса и уменьшить мощность, рассеиваемую на звуковой катушке. Однако за простоту и эффективность демпфирования приходится платить возрастанием влияния индуктивности ГГ на её характеристики, даже по сравнению с режимом работы от источника напряжения. Это вызвано тем, что постоянная времени L г /R г заменяется на большую, равную L г /. Соответственно понижается частота, начиная с которой в сумме импедансов системы «ГГ + УМЗЧ» начинает доминировать индуктивное сопротивление. Аналогично увеличивается и влияние тепловых изменений активного сопротивления звуковой катушки: сумма изменяющегося сопротивления звуковой катушки и неизменного отрицательного выходного сопротивления усилителя в процентном отношении изменяется сильнее.

Конечно, если R вых. УМ по абсолютной величине не превышает 1/3...1/5 от активного сопротивления обмотки звуковой катушки, потеря от введения ПОС невелика. Поэтому слабую ПОС по току для небольшого дополнительного демпфирования или для точной подстройки добротности в низкочастотной полосе применять можно. Кроме того, ПОС по току и режим источника тока в УМЗЧ не совместимы между собой, вследствие чего токовое питание ГГ в низкочастотной полосе, к сожалению, оказывается не всегда применимым.

С интермодуляционными искажениями мы, видимо, разобрались. Теперь осталось рассмотреть второй вопрос - величину и длительность призвуков, возникающих в диффузоре ГГ при воспроизведении сигналов импульсного характера. Этот вопрос гораздо сложнее и «тоньше».

Для исключения этих призвуков теоретически есть две возможности. Первая - это сдвинуть все резонансные частоты за пределы рабочего диапазона частот, в область далекого ультразвука (50...100 кГц). Этим способом пользуются при разработке маломощных высокочастотных ГГ и некоторых измерительных микрофонов. Применительно к ГГ - это способ «жесткого» диффузора.

Так вот, возможен и третий вариант - использование ГГ с относительно «жестким» диффузором и введение её акустического демпфирования. В этом случае удается в некоторой мере совместить достоинства обоих подходов. Именно таким образом чаще всего строятся студийные контрольные громкоговорители (большие мониторы). Естественно, что при питании демпфированной ГГ от источника напряжения из-за резкого падения полной добротности основного резонанса существенно искажается АЧХ. Источник тока в этом случае также оказывается предпочтительнее, поскольку способствует выравниванию АЧХ одновременно с исключением эффекта термической компрессии.

Обобщая вышеизложенное, можно сделать следующие практические выводы:

1. Режим работы головки громкоговорителя от источника тока (в противоположность источнику напряжения) обеспечивает существенное снижение интермодуляционных искажений, вносимых самой головкой.

2. Наиболее целесообразный вариант конструкции громкоговорителя с низкими интермодуляционными искажениями - активный многополосный, с разделительным фильтром (кроссовером) и отдельными усилителями на каждую полосу. Впрочем, этот вывод справедлив независимо от режима питания ГГ.

4. С целью получения высокого выходного сопротивления усилителя и сохранения малой величины его искажений следует применять ООС не по напряжению, а по току.

Конечно, автор понимает, что предлагаемый метод снижения искажений не является панацеей. Кроме того, в случае использования готового многополосного громкоговорителя осуществление токового питания его отдельных ГГ без переделки невозможна. Попытка же подключения многополосного громкоговорителя в целом к усилителю с повышенным выходным сопротивлением приведёт не столько к снижению искажений, сколько к резкому искажению АЧХ и соответственно, сбою тонального баланса. Тем не менее снижение интермодуляционных искажений ГГ почти на порядок , причем столь доступным методом, явно заслуживает достойного внимания.

С.АГЕЕВ, г. Москва

6.3. Монтаж и исследование апериодического усилителя низкой частоты на биполярном транзисторе

В усилителях на бипо лярных транзисторах используется три схемы подключения транзистора: с общей базой, с общим эмиттером, с общим коллектором. Наибольшее распространение получила схема включения с общим эмиттером.

Напомним, что входные цепи чувствительного усилителя низкой частоты обязательно выполняются экранированным проводом.

Для исследования работы усилителя по схеме рисунка 6.6 можно собрать усилитель, используя приведенную на рисунке 6.8 монтажную плату.

При монтаже усилителя необходимо в обязательном порядке соблюдать полярность подключения электролитических конденсаторов. На монтажной схеме показана полярность подключения только одного электролитического конденсатора. Полярность подключения двух других конденсаторов определяется по принципиальной схеме усилителя. Так как на выходе генератора синусоид альных колебаний, который будут использоваться для проверки изготовленного усилителя, нет постоянной составляющей напряжения, то полярность конденсаторов при использовании транзисторов n-р-n типа должна быть такой, как показано на рисунке 6.6, а для транзистора р-n-р типа - на рисунке 6.7.

Так как электролитические конденсаторы обладают индуктивным сопротивлением, то в высококачественных усилителях низкой частоты параллельно электролитическим конденсаторам ставят керамические конденсаторы небольшой емкости.

Измерение чувствительности и номинальной выходной

мощности усилителя низкой частоты

Предварительно задают необходимое значение коэффициента гармоник на выходе усилителя. Регулятор громкости усилителя устанавливают в положение максимальной громкости, а регуляторы тембра в среднее положение. Включают в сеть все измерительные приборы и подают питающее напряжение на усилитель. Со звукового генератора через делитель напряжения на резисторах R 1 , R 2 на вход усилителя подают синусоидальное напряжение частотой 1000 Гц. Постепенно увеличивают синусоидальное напряжение на входе усилителя и одновременно измеряют коэффициент гармоник сигнала на выходе усилителя. Как только коэффициент гармоник достигнет заданного значения, измеряют напряжение на выходе усилителя U Н.ВЫХ и определяют напряжение на входе усилителя U Н.ВХ. Если отсутствует чувствительный электронный вольтметр, то напряжение на входе усилителя определяют после измерения электронным вольтметром 1 напряжения U 1 на входе делителя напряжения (на резисторах R 1 и R 2 - рис. 6.9 ).

(6.1)

При небольшой чувствительности усилителя можно обойтись без делителя напряжения, так как мешающие напряжения, возникающие при подключении к входной цепи усилителя измерительных проводов, не окажут существенного влияния на результаты измерений.

Входное напряжение U н.вх характеризует чувствительность усилителя при заданном коэффициенте гармоник на выходе усилителя. Номинальную выходную мощность на нагрузке R н определяют по формуле:

(6.2)

Коэффициент гармоник 5-8 % можно примерно определить с помощью осциллографа. При таком коэффициенте гармоник заметно искажение синусоиды на экране осциллографа. Искажение синусоиды обнаружить проще, если воспользоваться двухлучевым осциллографом и сигнал на выходе усилителя сравнивать с сигналом на входе.

Таким образом, измерить чувствительность и определить номинальную выходную мощность усилителя низкой частоты при коэффициенте гармоник сигнала на выходе усилителя 5-8 % можно приблизительно без измерителя коэффициента гармоник. Максимальную выходную мощность усилителя определяют при коэффициенте гармоник 10 %.

Измерение входного сопротивления усилителя

Входное сопротивление усилителя низкой частоты обычно измеряют на частоте 1000 Гц. Если входное сопротивление усилителя R вх значительно меньше внутреннего сопротивления используемого вольтметра, то для определения входного сопротивления усилителя последовательно с его входом включают резистор, сопротивление которого примерно равно входному сопротивлению усилителя. Два электронных вольтметра подключают так, как показано на рисунке 6.10 , где R вх - входное сопротивление усилителя. Определение входного сопротивления усилителя сводится к решению следующей задачи: известны напряжения U 1 и U 2 , показываемые вольтметрами V 1 и V 2 , сопротивление резистора R; требуется определить R вх. Так как внутреннее сопротивление вольтметра V 2 значительно больше входного сопротивления усилителя, то:

(6.3)

Если входное сопротивление усилителя окажется соизмеримым с внутренним сопротивлением вольтметра, то определять R вх таким образом нельзя.

В этом случае для определения входного сопротивления усилителя собирают приборы по схеме рисунка 6.9 , но только без измерителя коэффициента гармоник. На вход усилителя подают синусоидальное напряжение частотой 1000 Гц, не превышающее по величине номинальное входное напряжение. Измеряют входное U вх1 и выходное U вых1 напряжения усилителя и определяют коэффициент усиления напряжения К = U вых1 /U вх1 . Затем последовательно со входом усилителя включают резистор R и, не изменяя напряжения на выходе звукового генератора, измеряют напряжение на выходе усилителя U вых2 . Напряжение на выходе усилителя уменьшилось, так как при включении резистора R последовательно со входом усилителя часть напряжения с выхода генератора падает на резисторе R, а часть - на входном сопротивлении R вх. На основании законов последовательного соединения можно записать:

U вх1 = U R + U R вх (6.4)

(6.5)

Выразим U Rвх и U вх1 через напряжения на выходе усилителя

(6.6) (6.7)

Подставив (6.6) и (6.7) в (6.5) получим:

(6.8)

Из (6.8) получим выражение для входного сопротивления усилителя:

(6.9)

Для повышения точности определения R вх необходимо, чтобы сопротивление резистора R было одного порядка с входным сопротивлением усилителя R вх.

Измерение выходного сопротивления усилителя

Выходное сопротивление усилителя определяют из закона Ома для полной цепи

(6.10)

где R н - сопротивление нагрузки, R вн - внутреннее (выходное) сопротивление источника. Учитывая, что напряжение на зажимах источника U = I × R н из (6.10) получим

U = e - I × R вн (6.11)

Отключим R н, тогда ток I будет очень маленьким, следовательно, напряжение на зажимах источника U будет равно электродвижущей силе e . Подключим R н. Тогда падение напряжения внутри источника (e - U Rн) будет относиться к падению напряжения на нагрузке U Rн как внутреннее сопротивление источника относится к сопротивлению нагрузки

(6.12) (6.13)

Для более точного определения внутреннего (выходного) сопротивления усилителя необходимо взять сопротивление R н одного порядка с внутренним.

Выходное сопротивление усилителя измеряют обычно на частоте 1000 Гц. От звукового генератора на вход усилителя подают синусоидальное напряжение 1000 Гц такое, чтобы при отключенной нагрузке коэффициент гармоник сигнала на выходе усилителя не превышал заданного для данного усилителя значения.

Для определения выходного сопротивления R вых измеряют выходное напряжение усилителя дважды. При отключенной нагрузке выходное напряжение будет равно ЭДС, а при подключенной - U Rн.

Выходное сопротивление усилителя определяют по формуле

(6.14)

Построение амплитудной характеристики

Важную информацию о качестве усилителя можно получить из амплитудной характеристики. Для снятия амплитудной характеристики собирают приборы по схеме рис. 6.9 , исключив измеритель гармоник. Со звукового генератора на вход усилителя подают синусоидальное напряжение частотой 1000 Гц такое, чтобы стало заметным отличие сигнала на выходе усилителя от синусоидального. Полученное значение входного напряжения увеличивают примерно в 1,5 раза и измеряют выходное напряжение усилителя электронным вольтметром. Полученные значения входного и выходного напряжения усилителя дадут одну из точек (крайнюю) амплитудной характеристики усилителя. Затем, уменьшая входное напряжение, снимают зависимость выходного напряжения от входного. Из амплитудной характеристики усилителя легко определяется коэффициент усиления по напряжению К=U вых /U вх. Входное и выходное напряжения усилителя для определения коэффициента усиления необходимо выбирать на линейном участке амплитудной характеристики. В этом случае коэффициент усиления усилителя не будет зависеть от входного напряжения.

Измерение уровня собственных шумов усилителя

Для определения уровня собственных шумов усилителя измеряют выходное напряжение усилителя, подключив к входу усилителя резистор, сопротивление которого равно входному сопротивлению усилителя. Уровень собственных шумов усилителя выражают в децибелах – формула (5.6). Для уменьшения влияния наводок от внешних электромагнитных полей входные цепи усилителя тщательно экранируют.

Определение коэффициента полезного действия усилителя

Коэффициент полезного действия усилителя определяют при подаче на вход синусоидального напряжения частотой 1000 Гц соответствующего номинальной выходной мощности. Определяют номинальную выходную мощность по формуле (6.2)

Мощность, потребляемую усилителем от источников (источника), определяют по формуле P 0 =I × U , где I - ток, потребляемый от источника, U - напряжение на клеммах усилителя, предназначенных для подключения источника питания (схему подключения амперметра и вольтметра выбирают с учетом минимальной погрешности определения потребляемой усилителем мощности в зависимости от имеющихся в наличии амперметра и вольтметра).

Определение диапазона усиливаемых частот

Для определения диапазона усиливаемых частот и коэффициента частотных искажений строят частотную (амплитудно-частотную) характеристику.

Из определения амплитудно-частотной характеристики усилителя следует, что для ее построения на вход усилителя можно подавать любое напряжение, соответствующее линейному участку амплитудной характеристики. Однако при слишком маленьких входных напряжениях могут появиться погрешности, обусловленные шумами и фоном переменного тока. При больших входных напряжениях могут проявиться нелинейности элементов усилителя. Поэтому амплитудно-частотную характеристику обычно снимают при входном напряжении, соответствующем выходной мощности, равной 0,1 от номинальной.

Приборы для снятия амплитудно-частотной характеристики собирают по схеме рис. 6.9 , причем измеритель гармоник и осциллограф можно не подключать.

Диапазон усиливаемых частот определяется из амплитудно-частотной характеристики с учетом допустимых частотных искажений. Амплитудно-частотная характеристика усилителя - это зависимость коэффициента усиления по напряжению от частоты. Из рис. 5.5 видно, как определить диапазон усиливаемых усилителем частот (полоса пропускания) при уменьшении коэффициента усиления на граничных частотах до 0,7 от максимального, что соответствует коэффициенту частотных искажений 3 дБ.


Так же, как и наушники, усилитель имеет свое собственное сопротивление, и если на это смотреть упрощенно, то электрическая схема выглядит так.



Таким образом мы имеем дело с дополнительным сопротивлением Rv, которое многие не учитывают и потом удивляются, почему их ожидания от звучания наушников не оправдываются. Условно можно разделить сопротивления усилителей на два типа - ровное и с повышением сопротивления в области низких частот.

Зависимость импеданса наушников и полного выходного сопротивления усилителя

Как Вы наверное знаете, когда наушники подключаются к усилителю, то их АЧХ меняется из-за индивидуального согласования импеданса наушников и полного выходного сопротивления усилителя. Если у наушников и усилителя сопротивление во всей полосе частот имеет постоянную величину или у усилителя сопротивление нулевое, то АЧХ не меняется, а вот во всех остальных случаях изменения неизбежны.
Если у усилителя выходное сопротивление постоянно, то частотный баланс будет меняться схожим образом с кривой имепеданса наушников, а если у усилителя сопротивление близко к нулю и повышается в области низких частот, то у наушников ослабнут низкие частоты.

В зависимости от значений сопротивлений наушников и усилителя и их соотношения, изменения могут быть как огромными, так и едва заметными. У высокоомных наушников изменения в АЧХ самые минимальные при подключении к разным усилителям, как и усилители с низким выходным сопротивлением мало влияют на АЧХ. Другими словами, чем выше соотношение сопротивления наушников к сопротивлению усилителя, тем меньше изменений в АЧХ.



Закономерный вопрос, а от чего же меняется АЧХ наушников? Дело в том, что чем меньше соотношение сопротивлений наушников к усилителю, тем на наушники подается меньше напряжения (), соответственно, если без наушников выставить уровень к примеру 1 В, то при подключении наушников значение напряжения подаваемого на наушники снизится, и чем не равномернее будет импеданс наушников, тем не равномернее и снизится АЧХ, какие-то частоты просядут существенно, а какие-то нет.



Пользователь обычно никогда не знает, сколько напряжения он подал на наушники, и если громкость недостаточная, то регулятор громкости исправляет ситуацию. Однако из-за того, что первоначально частоты снизились неравномерно, то подъем громкости возвращает их суммарный уровень, но уже в измененной АЧХ.

На графике в примере видно, что низкие и средние частоты просели больше, чем высокие.



Итоговый, понятный потребителю график принимает такой вид, где можно оценить не то, на сколько частоты проседают, сколько меняется их баланс.

Примеры типовых усилителей с характерными графиками полного выходного сопротивления

К категории усилителей с ровным выходным сопротивлением можно отнести (на основе измерений в лаборатории personalaudio)


К категории не только ровного выходного сопротивления, но близкого к нулевому можно отнести


К категории близкого к нулю и повышения в области низких частот можно отнести


В отчетах на каждые наушники дается анализ взаимодействия наушников с усилителями всех основных типов - с постоянным полным выходным сопротивлением и нулевым с подъемом в области низких частот.

Как измеряется внутреннее полное выходное сопротивление усилителя

Для измерения полного выходного сопротивления усилителя делается два измерения АЧХ усилителя под двумя нагрузками с помощью ARTA, при этом АЧХ фиксируется в абсолютных координатах а не относительных (как это делает например RMAA). Другими словами, делается оценка, на сколько проседают частоты под нагрузкой 16 Ом и под нарузкой 609 Ом. Конечный расчет кривой сопротивления производится в RAA, в которую загружаются данные по полученным АЧХ и указывается, под какой нагрузкой они были сделаны.

Нашли опечатку в тексте? Выделите и нажмите Ctrl+Enter . Это не требует регистрации. Спасибо.

Поделиться: