Импульсный блок питания унч. Усилитель своими руками - источник питания Импульсный блок питания для усилителя своими

В этом разделе предложены некоторые варианты реализации ПП блоков питания для усилителей. Схему БП с разделением батареи конденсаторов резисторами сопротивлением в пределах 0.15-0.47 Ом было предложено Л.Зуевым:

Разводка платы БП УНЧ Владимиром Лепехиным в формате lay

Для УНЧ Натали были разведены платы под электролитические конденсаторы диаметр посадки d=30, 35 и 40 мм с выводами snap-in

Схема со стабилизированным питанием для УН-а и операционного усилителя на м/с M5230L

Для проекта усилитель ASR на MOSFET с токовой ОООС от Maxim_A (Андрей Константинович), В.Лепехин развел платы под маломощный БП для УН-а усилителя и мощный БП для выходного каскада.

плата БП маломощный top

плата БП маломощный bottom

плата БП УНЧ top

плата БП УНЧ bottom

Для в реализации двойное моно будут использованы БП на таких ПП:

БП УНЧ V2012ЭА

Этот БП используется для питания ВК (выходного каскада). На плате можно устанавливать электролиты с креплением Snap-in диаметром до 30 мм, предусмотрена посадка под диоды в корпусах ТО220-3 и ТО220-2, что расширяет номенклатуру применяемых диодов. Габариты ПП 66 х 88 мм.

Для питания УН-а при раздельном питании, будет использована такая плата БП:

БП УНЧ V2012ЭА

Габариты ПП 66 х 52 мм. Посадка диодов универсальная можно поставить выводные и в корпусе ТО220-2, посадка электролитов диаметром до 25 мм.

Одной из самых популярных радиолюбительских конструкций являются усилители мощности звуковой частоты УМЗЧ . Для качественного прослушивания музыкальных программ в домашних условиях чаще всего используются достаточно мощные, 25…50Вт/канал, как правило, стереофонические усилители.

Столь большая мощность нужна вовсе не для того, чтобы получить очень большую громкость: усилитель, работающий вполовину мощности, позволяет получить более чистое звучание, искажения в таком режиме, а они есть даже у самого лучшего УМЗЧ, практически незаметны.

Хороший мощный УМЗЧ собрать и наладить достаточно сложно, но это утверждение справедливо, если усилитель собирается из дискретных деталей, - транзисторов, резисторов, конденсаторов, диодов, может быть, даже . Такая конструкция под силу достаточно квалифицированному радиолюбителю, который уже собрал не один и не два усилителя, спалив на первых опытах не один килограмм мощных выходных транзисторов.

Современная схемотехника позволяет избежать таких материальных, а главное, моральных затрат. Чтобы собрать достаточно мощный и качественный УМЗЧ, можно купить одну-две микросхемы, добавить к ним несколько пассивных деталей, спаять все это на небольшой печатной плате, и, пожалуйста, перед Вами УМЗЧ, который заработает сразу же после включения.

Качество воспроизведения будет весьма неплохим. «Лампового» звука получить, конечно, не удастся, но многие фирменные, а, тем более, китайские усилители, останутся позади. Ярким примером такого решения проблемы высококачественного звучания можно считать микросхему TDA7294.

Двухполярное напряжение питания микросхемы имеет очень большой диапазон ±10…±40В, что позволяет получить от микросхемы мощность свыше 50Вт на нагрузке 4Ω. Если такая мощность не требуется, достаточно просто несколько понизить питающее напряжение. Выходной каскад усилителя выполнен на полевых транзисторах, что обеспечивает хорошее качество звука.

Вывести микросхему из строя очень непросто. Выходной каскад имеет защиту от КЗ, кроме того имеется также тепловая защита. Микросхема, как усилитель, работает в классе AB, коэффициент полезного действия которого 66%. Поэтому, для того, чтобы получить выходную мощность 50Вт, потребуется источник питания мощностью 50/0,66=75,757Вт.

Собранный усилитель устанавливается на радиатор. Для уменьшения габаритов радиатора совсем неплохо, чтобы тепло от радиатора отводилось вентилятором. Для этих целей вполне подойдет небольшой компьютерный кулер, например, от видеокарт. Конструкция усилителя показана на рисунке 1.

Рисунок 1. Усилитель на микросхеме TDA7294

Здесь следует отметить небольшую особенность микросхемы TDA7294. У всех подобных мощных микросхем задняя металлическая спинка с отверстием для крепления к радиатору соединена с общим проводом схемы. Это позволяет закреплять микросхему на металлическом корпусе усилителя без изолирующей прокладки.

У микросхемы TDA7294 эта крепежная деталь электрически соединена с выводом отрицательного полюса источника питания, вывод 15. Поэтому, изолирующая прокладка с теплопроводной пастой КПТ-8, просто необходима. Еще лучше, если микросхема устанавливается на радиатор вообще без прокладки, только с теплопроводной пастой, а сам радиатор изолируется от корпуса (общего провода) усилителя.

Рисунок 2. Типовая схема включения TDA7294

Об усилителях на микросхеме TDA7294 можно рассказывать очень много, и те несколько строчек, что были написаны выше, вовсе не претендуют на полноту информации. Данный усилитель упоминается лишь для того, чтобы показать, какой мощности может понадобиться трансформатор, как определить его параметры, ведь статья-то называется «Трансформаторы для УМЗЧ».

Часто бывает, что создание конструкции начинается с создания макетных экземпляров, питание которых производится от лабораторного блока питания. Если схема оказалась удачной, то начинаются выполняться все остальные «плотницкие» работы: изготавливается корпус или используется подходящий от подобного промышленного устройства. На этой же стадии изготавливается блок питания и выбирается подходящий трансформатор.

Так какой нужен трансформатор?

Чуть выше было рассчитано, что мощность источника питания должна быть не менее 75 ватт, и это лишь для одного канала. Но где сейчас можно встретить монофонический усилитель? Теперь это, как минимум, двухканальный аппарат. Поэтому для стереофонического варианта потребуется трансформатор мощностью не менее ста пятидесяти ватт. На самом деле это не совсем так.

Такая большая мощность может потребоваться лишь в том случае, если будет усиливаться синусоидальный сигнал: вот просто подали на вход синусоиду и сидим, слушаем. Но долго слушать однообразное заунывное гудение, вряд ли доставит удовольствие. Поэтому нормальные люди чаще слушают музыку или смотрят фильмы со звуком. Вот тут и сказывается отличие музыкального сигнала от чистой синусоиды.

Реальный музыкальный сигнал синусоидой не является, а представляет собой сочетание больших кратковременных пиков и долговременных сигналов небольшой мощности, поэтому средняя мощность, потребляемая от источника питания, получается намного меньше.

Рисунок 3. Реальная мощность звукового сигнала. Средние уровни (желтая линия) синусоидального и реального звукового сигналов при одинаковых максимальных уровнях

Методика расчета блока питания приводится в статье «Расчет блока питания для усилителя мощности», которую можно найти по ссылке,

http://www.interlavka.narod.ru/stats03/blok_pitaniy.htm Автор статьи Андрей Данилов.

В статье приводятся соображения по выбору параметров блока питания, там же можно скачать программу для расчета блока питания с учетом особенностей воспроизводимых музыкальных программ. Программа работает без установки в системе, достаточно просто распаковать архив. Результаты работы программы сохраняются в текстовом файле, который появляется в папке, где находится программа расчета. Скриншоты работы программы показаны на рисунках 4 и 5.

Рисунок 4. Ввод данных в программу расчета

Расчеты выполнены для блока питания собранного по схеме, показанной на рисунке 5.

Рисунок 5. Блок питания УМЗЧ. Результаты расчета

Таким образом, для двухканального усилителя мощностью 50Вт с нагрузкой 4Ω потребуется трансформатор мощностью 55Вт. Вторичная обмотка со средней точкой с напряжениями 2*26,5В с током нагрузки 1А. Вот из таких соображений следует выбирать трансформатор для УМЗЧ.

Казалось бы, что трансформатор получился слабоват. Но, если внимательно почитать упомянутую чуть выше статью, то все становится на свои места: автор достаточно убедительно рассказывает, из каких критериев следует исходить при расчете блока питания УМЗЧ.

Тут можно сразу задать встречный вопрос: «А если мощность имеющегося под рукой трансформатора окажется больше, чем по расчету?». Да ничего страшного не произойдет, просто трансформатор будет работать вполсилы, не будет особо напрягаться и сильно греться. Естественно, что выходные напряжения трансформатора должны быть те же, что получились по расчету.

Габаритная мощность трансформатора

Совсем нетрудно заметить, что чем мощнее трансформатор, тем больше его размер и вес. И это нисколько не удивительно, ведь есть такое понятие, как габаритная мощность трансформатора. Другими словами, чем больше и тяжелее трансформатор, тем больше его мощность, тем больше мощность подключаемой к вторичной обмотке нагрузки.

Расчет габаритной мощности по формуле

Чтобы определить габаритную мощность трансформатора достаточно простой линейкой измерить геометрические размеры сердечника, а затем, с приемлемой точностью, рассчитать все по упрощенной формуле.

где P - габаритная мощность, Sc=a*b - площадь сердечника, So=c*h - площадь окна. Возможные типы сердечников показаны на рисунке 5. Сердечники, собранные по схеме ШЛ, называются броневыми, в то время, как сердечники ПЛ стержневыми.

Рисунок 6. Типы сердечников трансформаторов

В учебниках электротехники формула для расчета габаритной мощности имеет вид устрашающий, и куда более длинный. В упрощенной формуле приняты следующие условия, присущие большинству сетевых трансформаторов, просто некоторые усредненные значения.

Считается, что КПД трансформатора 0,9, частота сетевого напряжения 50Гц, плотность тока в обмотках 3,5А/мм2, магнитная индукция 1,2Тл. При этом коэффициент заполнения медью 0,4, а коэффициент заполнения сталью 0,9. Все эти величины как раз и входят в «настоящую» формулу для расчета габаритной мощности. Как и всякая другая упрощенная формула, эта формула может дать результат с ошибкой процентов в пятьдесят, такова расплата за упрощение расчета.

Здесь достаточно вспомнить хотя бы про КПД трансформатора: чем больше габаритная мощность, тем выше КПД. Так трансформаторы мощностью 10…20Вт имеют КПД 0,8, а трансформаторы 100…300Вт и выше имеют КПД 0,92…0,95. В таких же пределах могут изменяться и другие величины, входящие в «настоящую» формулу.

Формула, конечно, достаточно простая, но в справочниках существуют таблицы, где «все уже подсчитано до нас». Так не надо усложнять себе жизнь, и воспользоваться уже готовым продуктом.

Рисунок 7. Таблица для определения габаритной мощности трансформатора. Значения рассчитаны для частоты 50Гц

Третья цифра в маркировке сердечников ПЛ обозначает параметр h - высота окна, как показано на рисунке 6.

Кроме габаритной мощности, в таблице также имеется такой важный параметр, как число витков на вольт. Причем, наблюдается такая закономерность: чем больше размер сердечника, тем меньше число витков на вольт. Для первичной обмотки это число указано в предпоследней колонке таблицы. В последней колонке указано число витков на вольт для вторичных обмоток, которое несколько больше, чем в первичной обмотке.

Это различие связано с тем, что вторичная обмотка расположена дальше от сердечника (керна) трансформатора и находится в ослабленном магнитном поле, нежели первичная обмотка. Чтобы компенсировать это ослабление приходится несколько увеличивать количество витков вторичных обмоток. Здесь вступает в силу некоторый эмпирический коэффициент: если при токе во вторичной обмотке 0,2…0,5А число витков умножается на коэффициент 1,02, то для токов 2…4А коэффициент увеличивается до 1,06.

Как определить число витков на вольт

Многие формулы в электротехнике являются эмпирическими, полученными методом многочисленных опытов, а также проб и ошибок. Одной из таких формул является формула для расчета числа витков на вольт в первичной обмотке трансформатора. Формула достаточно проста:

тут, вроде, все понятно и просто: ω - это искомое число витков/вольт, S - площадь сердечника в сантиметрах квадратных, а вот 44, - это, как утверждают некоторые авторы, постоянный коэффициент.

Чтобы ответить на этот вопрос следует несколько преобразовать формулу, вместо «постоянного коэффициента» подставить букву, ну, хотя бы K.

Тогда вместо постоянного коэффициента получается переменная величина, или, как говорят программисты, переменная. Эта переменная может принимать различные значения, естественно, в каких-то пределах. Величина этой переменной зависит от конструкции сердечника и марки трансформаторной стали. Обычно переменная K находится в диапазоне 35…60. Меньшие значения этого коэффициента приводят к более жесткому режиму работы трансформатора, но облегчают намотку, за счет меньшего количества витков.

Если трансформатор предназначается для работы в высококачественной аудио аппаратуре, то K выбирают по возможности выше, как правило, 60. Это поможет избавиться от наводок с частотой сети идущих от силового трансформатора.

Теперь можно обратиться к таблице, показанной на рисунке 7. Там есть сердечник ШЛ32X64 с площадью 18,4 см2. В предпоследней колонке таблицы указано число витков на вольт для первичной обмотки. Для железа ШЛ32X64 это 1,8 витков/В. Чтобы узнать, какой величиной K руководствовались разработчики при расчете этого трансформатора, достаточно произвести несложный подсчет:

K=ω*S = 1,8*18,4 = 33,12

такой маленький коэффициент позволяет утверждать, что качество трансформаторного железа хорошее или просто стремились к экономии меди.

Да, таблица это хорошо. Если есть желание, время, сердечник и обмоточный провод, остается только засучить рукава и намотать требуемый трансформатор. Еще лучше, если есть возможность купить подходящий трансформатор или достать его из собственных «стратегических» запасов.

Трансформаторы промышленного изготовления

Когда-то советская промышленность выпускала целую серию малогабаритных трансформаторов: ТА, ТАН, ТН и ТПП. Эти аббревиатуры расшифровываются как, трансформатор анодный, анодно-накальный, накальный и трансформатор для питания полупроводниковой аппаратуры. Вот именно трансформатор марки ТПП может оказаться наиболее подходящим для рассматриваемого выше усилителя. Трансформаторы этой модели выпускаются мощностью 1,65…200Вт.

При расчетной мощности 55Вт вполне подойдет трансформатор ТПП-281-127/220-50 мощностью 72Вт. Из обозначения можно понять, что это трансформатор для питания полупроводниковой аппаратуры, порядковый номер разработки 281, напряжение первичной обмотки 127/220В, частота питающей сети 50Гц. Последний параметр достаточно важный, если учесть, что трансформаторы ТПП выпускаются также на частоту 400Гц.

Рисунок 8. Параметры трансформатора ТПП-281-127/220-50

Ток первичной обмотки указан для напряжений 127/220В. В таблице ниже указаны напряжения и токи вторичных обмоток, а также выводы трансформатора, на которые эти обмотки распаяны. Схема всего многообразия трансформаторов ТПП одна: все те же обмотки, все те же номера выводов. Вот только напряжения и токи обмоток для всех моделей трансформаторов разные, что позволяет подобрать трансформатор для любого случая.

На следующем рисунке показана электрическая схема трансформатора.

Рисунок 9. Электрическая схема трансформаторов ТПП

Для блока питания двухканального усилителя мощностью 50Вт, пример расчета которого был приведен чуть выше, потребуется трансформатор мощностью 55Вт. Вторичная обмотка со средней точкой с напряжениями 2*26,5В с током нагрузки 1А. Совершенно очевидно, что для получения таких напряжений, потребуется соединить синфазно обмотки 10 и 20В, и в противофазе обмотку 2,62В

10+20-2,62=27,38В,

что почти соответствует расчету. Таких обмоток получается две, которые соединяются последовательно в одну со средней точкой. Соединение обмоток показано на рисунке 10.

Рисунок 10. Соединение обмоток трансформатора ТПП-281-127/220-50

Первичные обмотки соединены в соответствии с технической документацией, хотя можно воспользоваться и другими отводами, что позволит точнее подобрать выходные напряжения.

Как соединить вторичные обмотки

Обмотки 11-12 и 17-18 соединены синфазно - конец предыдущей обмотки, с началом следующей (начало обмоток обозначается точкой). В результате получается одна обмотка с напряжением 30В, а по условиям задачи требуется 26,5. Чтобы приблизиться к этому значению, к обмоткам 11-12 и 17-18 в противофазе подключена обмотка 19-20. Это соединение показано синей линией, получается одна половина обмотки со средней точкой. Красной линией показано соединение другой половины обмотки, показанной на рисунке 5. Соединение точек 19 и 21 образует среднюю точку обмотки.

Последовательное и параллельное соединение обмоток

При последовательном соединении лучше всего, если допустимые токи обмоток равны, таким же будет и выходной ток для двух и более обмоток. Если ток одной из обмоток меньше, именно он будет выходным током полученной обмотки. Такое рассуждение хорошо, когда имеется принципиальная схема трансформатора: просто паяй перемычки и меряй что получилось. А если схемы нет? Об этом будет рассказано в следующей статье.

Допускается также параллельное соединение обмоток. Здесь требование такое: напряжение обмоток должно быть одинаковым, а соединение синфазным. В случае трансформатора ТПП-281-127/220-50 возможно соединить две 10-ти вольтовые обмотки (выводы 11-12, 13-14), две 20-ти вольтовые обмотки (выводы 15-16, 17-18), две обмотки по 2,62В (выводы 19-20, 21-22). Получится три обмотки с токами 2,2А. Соединение первичной обмотки выполнено в соответствии со справочными данными трансформатора.

Вот так хорошо все получается, если данные трансформатора известны. Одним из немаловажных параметров трансформатора является его цена, которая в немалой степени зависит от фантазии и наглости продавца.

Рассмотренный в качестве примера трансформатор ТПП-281-127/220-50 у разных продавцов интернете предлагается по цене 800…1440 рублей! Согласитесь, что это будет дороже самого усилителя. Выходом из такого положения может стать использование подходящего трансформатора добытого из старой бытовой аппаратуры, например, от ламповых телевизоров или старых ЭВМ.

Сейчас редко кто внедряет в самодельную конструкцию усилителя сетевой трансформатор, и правильно - импульсный бп более дешевый, легкий и компактный, а хорошо собранный почти не отдает помех в нагрузку (либо помехи сведены к минимуму).

Разумеется, не спорю, сетевой трансформатор гораздо, гораздо надежней, хотя и современные импульсники, напичканные всевозможными защитами тоже неплохо справляются со своей задачей.

IR2153 - я бы сказал уже легендарная микросхема, которая применяется радиолюбителями очень часто, и внедряется именно в сетевые импульсные источники питания. Микросхема из себя представляет простой полумостовой драйвер и в схемах иип работает в качестве генератора импульсов.

На основе данной микросхемы строятся блоки питания от нескольких десятков до нескольких сотен ватт и даже до 1500 ватт, разумеется с ростом мощности будет усложняться схема.

Тем не менее не вижу смысла делать иип высокой мощности с применением именно этой микросхемы, причина - невозможно организовать выходную стабилизацию или контроль, и не только Микросхема не является ШИМ контроллером, следовательно ни о каком ШИМ управлении не может идти и речи, а это очень плохо. Хорошие иип как право делают на двухтактных микросхемах ШИМ, к примеру ТЛ494 или ее сородичи и т.п, а блок на IR2153 в большей степени блок начинающего уровня.

Перейдем к самой конструкции импульсного источника питания. Все собрано по даташиту - типичный полумост, две емкости полумоста, которые постоянно находятся в цикле заряд/разряд. От емкости этих конденсаторов будет зависеть мощность схемы в целом (ну разумеется не только от них). Расчетная мощность именно этого варианта составляет 300 ватт, мне больше и не нужно, сам блок для запитки двух каналов унч. Емкость каждого из конденсаторов 330мкФ, напряжение 200 Вольт, в любом компьютерном блоке питания как раз стоят такие конденсаторы, по идее схематика комповых бп и нашего блока в чем то схоже, в обеих случаях топология - полумост.

На входе блока питания тоже все как положено - варистор для защиты от перенапряжений, предохранитель, сетевой фильтр ну и разумеется выпрямитель. Полноценный диодный мост, который можно и взять готовый, главное, чтобы мост или диоды имели обратное напряжение не менее 400 Вольт, в идеале 1000, и с током не менее 3Ампер. Разделительный конденсатор - пленка, 250 В а лучше 400, емкость 1мкФ, к стати - тоже можно найти в компьютерном блоке питания.

Трансформатор Рассчитан по программе, сердечник от компового бп, габаритные размеры увы указать не могу. В моем случае первичная обмотка 37 Витков проводом 0,8мм, вторичная 2 по 11 витков шиной из 4-х проводов 0.8мм. С таким раскладом выходное напряжение в районе 30-35 Вольт, разумеется, намоточные данные будут у всех разные, в зависимости от типа и габаритных размеров сердечника.

Многие знают как я люблю разбираться с разными блоками питания. В этот раз у меня на столе несколько необычный блок питания, по крайней мере такой я еще не тестировал. Да и по большому счету вообще не встречал ранее обзоров блоков питания подобной разновидности, хотя вещь по своему интересная и я раньше делал подобные блоки питания сам.
Заказать я его решил из чистого любопытства, решил что может быть полезным. Впрочем подробнее в обзоре.

Вообще стоит наверное начать с небольшого лирического вступления. Много лет назад я довольно сильно увлекался аудиотехникой, прошел как через полностью самодельные варианты, так и «гибриды», где использовались УМ мощностью до 100 Ватт из магазина Юный техник, и полуразобранная Радиотехника УКУ 010, 101 и Одиссей 010, потом был Феникс 200У 010С.
Даже пробовал собрать УМЗЧ Сухова, но что-то тогда не пошло, уже и не вспомню что именно.

Акустика также разная была, как самодельная, так и готовая, например Романтика 50ас-105, Кливер 150ас-009.

Но больше всего запомнились Амфитон 25АС 027, правда они у меня были несколько доработаны. Попутно к небольшим изменениям схемы и конструкции я заменил родные динамики 50 ГДН на 75 ГДН.
Это и предыдущие фото не мои, так как моя аппаратура давно продана, а я потом перешел на Sven IHOO 5.1, а затем вообще стал слушать только мелкие компьютерные колоночки. Да, вот такой регресс.

Но вот что-то начали бродить в голове мысли, сделать что нибудь, например усилитель мощности, возможно просто так, возможно вообще все делать по другому. Но в итоге решил я заказать блок питания. Конечно я могу его сделать сам, мало того, в одном из обзоров я не только это делал, а и выложил подробную инструкцию, но к этому я еще вернусь, а пока перейду к обзору.

Начну со списка заявленных технических характеристик:
Напряжение питания - 200-240 Вольт
Выходная мощность - 500 Ватт
Выходные напряжения:
Основное - ±35 Вольт
Вспомогательное 1 - ± 15 Вольт 1 Ампер
Вспомогательное 2 - 12 Вольт 0.5 Ампера, гальванически отвязано от остальных.
Размеры - 133 x 100 x 42 мм

Каналы ± 15 и 12 Вольт имеют стабилизацию, основное напряжение ±35 Вольт не стабилизировано. Здесь я наверное выскажу свое мнение.
Меня часто спрашивают, какой блок питания купить для одного либо другого усилителя. На что я обычно отвечаю - проще собрать самому на базе известных драйверов IR2153 и их аналогов. Первый же вопрос, который следует после этого - так у них же нет стабилизации напряжения.
Да, лично на мой взгляд - стабилизация напряжения питания УМЗЧ не только не нужна, а иногда и вредна. Дело в том, что стабилизированный БП обычно больше шумит на ВЧ и кроме того, могут быть проблемы с цепями стабилизации, потому как усилитель мощности потребляет энергию не равномерно, а всплесками. Мы же слушаем музыку, а не одну частоту.
БП без стабилизации обычно имеет немного выше КПД, так как трансформатор всегда работает в оптимальном режиме, не имеет обратной связи и потому больше похож на обычный трансформатор, но с меньшим активным сопротивлением обмоток.

Вот собственно перед нами и пример БП для усилителей мощности.

Упаковка мягкая, но замотали так, что вряд ли получится его повредить в процессе доставки, хотя противостояние почты и продавцов наверное будет вечным.

Внешне выглядит красиво, особо и не придерешься.



Размер относительно компактный, особенно если сравнивать с обычным трансформатором соответствующей мощности.

Более понятные размеры есть на странице товара в магазине.

1. На входе блока питания установлен разъем, что оказалось довольно удобным.
2. Присутствует предохранитель и полноценный входной фильтр. Вот только про термистор, защищающий от бросков тока как сеть, так и диодный мост с конденсаторами, забыли, это плохо. Также в районе входного фильтра расположены контактные площадки, которые надо замкнуть для перевода БП на напряжение 110-115 Вольт. Перед первым включением лучше проверить, не замкнуты ли площадки если у вас в сети 220-230.
3. Диодный мост KBU810, все бы ничего, но он без радиатора, а при 500 Ватт он уже желателен.
4. Входные фильтрующие конденсаторы имеют заявленную емкость 470 мкФ, реальная около 460 мкФ. Так как они включены последовательно, то общая емкость входного фильтра составляет 230мкФ, маловато для выходной мощности в 500 Ватт. Кстати плата предполагает установку и одного конденсатора. Но в любом случае поднимать емкость без установки термистора я бы не советовал. Причем справа от предохранителя есть даже место для термистора, надо только впаять его и перерезать под ним дорожку.

В инверторе применены транзисторы IRF740, хоть и далеко не новые транзисторы, но раньше я их также широко применял в подобных применениях. Как альтернатива, IRF830.
Транзисторы установлены на отдельных радиаторах, сделано это отчасти не просто так. Радиаторы соединены с корпусом транзистора, причем не только в месте крепления самого транзистора, а и монтажные выводы радиатора соединены на самой плате. На мой взгляд плохое решение, так как будет лишнее излучение в эфир на частоте преобразования, по крайней мере нижний транзистор инвертора (на фото он дальний) я бы отвязал от радиатора, а радиатор от схемы.

Управляет транзисторами неизвестный модуль, но судя по наличию резистора питания, да и просто моему опыту, думаю что не сильно ошибусь, если скажу что внутри стоит банальная IR2153. правда зачем делать такой модуль, для меня осталось загадкой.

Инвертор собран по полумостовой схеме, но в качестве средней точки используется не точка соединения фильтрующих электролитических конденсаторов, а два пленочных конденсатора емкостью 1мкФ (на фото два параллельно трансформатору), а первичная обмотка подключена через третий конденсатор, также емкостью 1мкФ (на фото перпендикулярно трансформатору).
Решение известное и по своему удобное, так как позволяет весьма просто не только увеличить емкость входного фильтрующего конденсатора, а и применить один на 400 Вольт, что может быть полезным при апгрейде.

Габарит трансформатора весьма скромный для заявленной мощности в 500 Ватт. Я конечно протестирую еще его под нагрузкой, но уже могу сказать, что на мой взгляд его реальная длительная мощность на более 300-350 Ватт.

На странице магазина, в перечне ключевых особенностей, было указано -

3. Transformers 0.1 mm * 100 multi-strand oxygen-free enameled wire, heat is very low, efficiency is more than 90%.
Что в переводе означает - в трансформаторе использована обмотка из 100 штук бескислородных проводов диаметром 0.1мм, уменьшен нагрев и КПД выше 90%.
Ну КПД я проверю потом, а вот насчет того, что обмотка многопроволочная, факт. Я конечно их не пересчитывал, но жгут довольно неплохой и данный вариант намотки действительно положительно сказывается на качестве работы трансформатора в частности и всего БП в целом.

Не забыли и про конденсатор, соединяющий «горячую» и «холодную» сторону БП, причем поставили его правильного (Y1) типа.

В выходном выпрямителе основных каналов применены диодные сборки MUR1620CTR и MUR1620CT (16 Ампер 200 Вольт), причем производитель не стал колхозить «гибридные» варианты, а поставил как положено, две комплементарные сборки, одна с общим катодом, а другая с общим анодом. Обе сборки установлены на отдельных радиаторах и также как в случае с транзисторами, они не изолированы от компонентов. Но в данном случае проблема может быть только в плане электробезопасности, хотя если корпус закрыт, то ничего страшного в этом нет.
В выходном фильтре задействовано по паре конденсаторов 1000мкФ х 50 Вольт, что на мой взгляд маловато.

Кроме того, для уменьшения пульсаций между конденсаторами установлен дроссель, а конденсаторы, стоящие после него, дополнительно зашунтированы керамическим 100 нФ.
Вообще на странице товара было написано -

1. All high-frequency low-impedance electrolytic capacitors specifications, low ripple.
В переводе - все конденсаторы имеют низкий импеданс для уменьшения пульсаций. В общем-то так то оно и есть, применены Cheng-X, но это по сути просто немного улучшенный вариант обычных китайских конденсаторов и я бы лучше поставил мою любимую Samwha RD или Capxon KF.

Параллельно конденсаторам нет разрядных резисторов, хотя место на плате для них имеется, потому вас могут ждать «сюрпризы», так как заряд держится довольно долго.

Дополнительные каналы питания подключены к своим обмоткам трансформатора, причем канал 12 Вольт гальванически отвязан от остальных.
Каждый канал имеет независимую стабилизацию напряжения, дроссели для уменьшения помех и керамические конденсаторы по выходу. Но вы наверное заметили, что диодов в выпрямителе пять. Канал 12 Вольт питается от однополупериодного выпрямителя.

По выходу, как и по входу, стоят клеммники, причем весьма неплохого качества и конструкции.

На странице товара есть фото сверху, где видно все и сразу. Уже потом заметил, что в магазине на всех фото есть монтажные стойки, в моем комплекте их не было:(

Печатная плата двухсторонняя, качество весьма высокое, использован стеклотекстолит, а не привычный гетинакс. В одном из узких место сделана защитная прорезь.
Снизу также обнаружилась пара резисторов, предположу, что это примитивная схема защиты от перегрузки, которую иногда добавляют к драйверам на IR2153. Но честно говоря, я бы на нее не рассчитывал.

Также снизу печатной платы присутствует маркировка выходов и варианты выходных напряжений, под которые изготавливаются данные платы. Немного заинтриговали две вещи - два одинаковых варианта ± 70 Вольт и заказной вариант.

Перед тем, как перейти к тестам, немного расскажу о своем варианте подобного БП.
Примерно три с половиной года назад я выкладывал регулируемого БП, где использовался блок питания собранный примерно по такой же схеме.

В собранном виде он также выглядел довольно похоже, извините за плохое качество фото.

Если убрать из моего варианта все «лишнее», например узел регулировки оборотов вентилятора в зависимости от температуры, а также умощненный драйвер транзисторов и схему дополнительного питания от выхода инвертора, то мы получим схему обозреваемого БП.
По сути это тот же БП, только выходных напряжений больше. Вообще схемотехника данного БП совсем простая, проще только банальный автогенератор.

Кроме того обозреваемый БП снабжен примитивной схемой ограничения выходной мощности, подозреваю что реализована она так, как показано на выделенном участке схемы.

Но посмотрим на что способна данная схема и ее реализация в обозреваемом блоке питания.
Здесь надо отметить, что так как стабилизация основного напряжения отсутствует, то оно напрямую зависит от напряжения в сети.
При входном напряжении 223 Вольта выходное составляет 35.2 в режиме холостого хода. Потребление при этом 3.3 Ватта.

При этом присутствует заметный нагрев резистора питания драйвера транзисторов. Его номинал 150 кОм, что при 300 Вольт дает рассеиваемую мощность порядка 0.6 Ватта. Данный резистор греется независимо от нагрузки блока питания.
Также заметен небольшой нагрев трансформатора, фото сделано примерно через 15 минут после включения.

Для нагрузочного теста была собрана конструкция, состоящая из двух электронных нагрузок, осциллографа и мультиметра.
Мультиметр измерял один канал питания, второй канал контролировался вольтметром электронной нагрузки, которая была подключена короткими проводами.

Не буду утомлять читателя большим перечислением тестов, потому сразу перейду к осциллограммам.
1, 2. Разные точки выхода БП до диодных сборок, и с разным временем развертки. Частота работы инвертора составляет 70 кГц.
3, 4. Пульсации перед дросселем канала 12 Вольт и после него. После КРЕНки вообще все гладко, но есть проблема, напряжение в этой точке всего около 14.5 Вольта без нагрузки основных каналов и 13.6-13.8 с нагрузкой, что мало для стабилизатора 12 Вольт.

Нагрузочные тесты проходили так:
Сначала нагружал один канал на 50%, затем второй на 50%, потом нагрузку первого поднимал до 100%, а затем и второй. В итоге получалось четыре режима нагрузки - 25-50-75-100%.
Сначала что на выходе по ВЧ, на мой взгляд очень даже неплохо, пульсации минимальны, а при установке дополнительного дросселя их вообще можно свести почти до нуля.

А вот на частоте 100 Гц все довольно грустно, маловата емкость по входу, маловата.
Полный размах пульсаций при 500 Ватт выходной мощности составляет около 4 Вольт.

Нагрузочные тесты. Так как напряжение под нагрузкой проседало, то я по мере этого поднимал тока нагрузки чтобы выходная мощность примерно соответствовала ряду 125-250-375-500 Ватт.
1. Первый канал - 0 Ватт, 42.4 Вольта, второй канал - 126 Ватт, 33.75 Вольта
2. Первый канал - 125.6 Ватта, 32.21 Вольта, второй канал - 130 Ватт, 32.32 Вольта.
3. Первый канал - 247.8 Ватта, 29.86 Вольта, второй канал - 127 Ватт, 30.64 Вольта.
4. Первый канал - 236 Ватт, 29.44 Вольта, второй канал - 240 Ватт, 29.58 Вольта.

Вы наверное заметили, что в первом тесте напряжение не нагруженного канала больше 40 Вольт. Это обусловлено выбросами напряжения, а так как нагрузки нет совсем, то напряжение плавно поднималось, даже небольшая нагрузка возвращала напряжение в норму.

Одновременно измерялось потребление, но так как есть относительно большая погрешность при измерении выходной мощности, то расчетные значения КПД я также буду приводить ориентировочно.
1. 25% нагрузки, КПД 89.3%
2. 50% нагрузки, КПД 91.6%
3. 75% нагрузки, КПД 90%
4. 476 Ватт, около 95% нагрузки, КПД 88%
5, 6. Просто ради любопытства измерил коэффициент мощности при 50 и 100% мощности.

В общем-то результаты примерно похожи на заявленные 90%

Тесты показали довольно неплохую работу блока питания и все было бы замечательно, если бы не привычная «ложка дегтя» в виде нагрева. Еще в самом начале я оценил примерно мощность БП в 300-350 Ватт.
В процессе привычного теста с постепенным прогревом и интервалами по 20 минут я выяснил, что при мощности 250 Ватт Бп ведет себя просто отлично, нагрев компонентов примерно такой:
Диодный мост - 71
Транзисторы - 66
Трансформатор (магнитопровод) - 72
Выходные диоды - 75

Но когда я поднял мощность до 75% (375 Ватт), то через 10 минут картина была совсем дургая
Диодный мост - 87
Транзисторы - 100
Трансформатор (магнитопровод) - 78
Выходные диоды - 102 (более нагруженный канал)

Попытавшись разобраться с проблемой, я выяснил, что идет сильный перегрев обмоток трансформатора, в следствие этого прогревается магнитопровод, снижается его индукция насыщения и он начинает входить в насыщение в итоге резко увеличивается нагрев транзисторов (позже я регистрировал температуру до 108 градусов), затем я остановил тест. При этом тесты " на холодную" с мощностью в 500 Ватт проходили нормально.

Ниже пара термофото, первое при мощности нагрузки 25%, второе при 75%, соответственно через пол часа (20+10 минут). Температура обмоток достигла 146 градусов и был заметный запах перегретого лака.

В общем теперь подведу некоторые итоги, отчасти неутешительные.
Общее качество изготовления очень хорошее, но есть некоторые конструктивные нюансы, например установка транзисторов без изоляции от радиаторов. Радует большое количество выходных напряжений, например 35 Вольт для питания усилителя мощности, 15 для предварительного усилителя и независимые 12 Вольт для всяких сервисных устройств.

Есть схемные недоработки, например отсутствие термистора по входу и малая емкость входных конденсаторов.
В характеристиках было заявлено что дополнительные каналы 15 Вольт могут выдать ток до 1 Ампера, реально я бы не ждал больше 0.5 Ампера без дополнительного охлаждения стабилизаторов. Канал 12 Вольт скорее всего вообще не выдаст более 200-300мА.

Но все эти проблемы либо не критичны, либо легко решаются. Самая сложная проблема - нагрев. БП может длительно отдавать до 250-300 Ватт, 500 Ватт только относительно кратковременно, либо придется добавлять активное охлаждение.

Попутно у меня возник небольшой вопрос к уважаемой общественности. Есть мысли сделать свой усилитель, соответственно с обзорами. Но какой был бы интереснее, усилитель мощности, предварительный, если УМ, то на какую мощность и т.п. Лично мне он не особо нужен, но вот поковыряться настроение есть. Обозреваемый БП к этому имеет слабое отношение:)

На этом у меня все, надеюсь что информация была полезна и как обычно жду вопросов в комментариях.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +38 Добавить в избранное Обзор понравился +115 +179

Всем доброго времени. Позвольте представить силовой инвертор для питания мощного аудиоусилителя. К сожалению, особенно хорошо повторяемых. Поэтому решено было сделать такой источник питания с нуля. Потребовалось немало времени, чтобы проектировать, построить и протестировать этот ИБП. И вот, проведя последние испытания (все тесты прошли успешно) можно сказать что проект закончен и его можно выставить на суд уважаемой радиолюбительской аудитории сайта 2 Схемы.ру

Проект этого инвертора отлично подходит для , собственно для него он и разрабатывался. Преобразователь не сложен и должен быть успешно собран не слишком продвинутыми электронщиками. Для запуска не требуется даже осциллограф, но конечно это было бы полезно. Основа схемы источника питания — м/с TL494.

Он имеет защиту от короткого замыкания и должен обеспечить непрерывную мощность 250 Вт. Преобразователь также имеет дополнительное выходное напряжение +/- 9..12 В, которое будет использоваться для питания предусилителя, вентиляторов и т.д.

Импульсный БП для усилителя — схема

Преобразователь выполнен в соответствии с этой схемой. Размеры платы 150×100 мм.

Инвертор состоит из нескольких базовых модулей, присутствующих в большинстве похожих БП, таких как блок питания ATX. Предохранитель, термистор и сетевой фильтр, состоящий из C21, R21 и L5, идут к источнику питания переменного тока 220 В. Затем выпрямительный мост D26-D29, входные конденсаторы инвертора C18 и C19 и силовые транзисторы Q8 и Q9 для переключения напряжения на трансформаторе. Силовые транзисторы управляются с помощью дополнительного трансформатора T2 одним из самых популярных ШИМ-контроллеров — TL494 (KA7500). Трансформатор тока Т3 для измерения выходной мощности последовательно соединен с первичной обмоткой. Трансформатор T1 имеет две разделенные вторичные обмотки. Одна из них формирует напряжение 2×35 В, а другая 2×12 В. На каждой из обмоток есть фаст диоды D14-D17 и D22-D25, которые в общей сложности образуют 2 выпрямительных моста.

После нагрузки линии +/- 34 В резистором 14 Ом, напряжение падает до +/- 31 В. Это довольно хороший результат для такого небольшого ферритового сердечника. Через 5 минут диоды D22-D25, основной трансформатор и MOSFET нагревались до температуры порядка 50C, что вполне безопасно. После подключения двух каналов TDA7294 напряжение упало до +/- 30 В. Инверторные элементы нагревались подобно резистивной нагрузке. После экспериментов выходная цепь оснащена конденсаторами 2200uF и дросселями 22uH / 14A. Падение напряжения немного выше, чем в случае с 6.8uH, однако их использование явно уменьшает нагрев МОП-транзисторов.

Выходное напряжение под нагрузкой обоих выходов с лампочками мощностью 20 Вт:

Принцип работы импульсного блока питания

Напряжение 220 В выпрямляется мостом с диодами D26-D29. Входные конденсаторы C18 и C19 заряжаются до общего напряжения 320 В, а поскольку инвертор работает в полумостовой системе, они делят их на половину, что дает 160 В на конденсатор. Это напряжение дополнительно уравновешивается резисторами R16 и R17. Благодаря этому разделению можно подключить трансформатор Т1 к одному каналу. Тогда потенциал между конденсаторами обрабатывается как масса, один конец первичной обмотки подключен к +160 В, другой к -160 В. Напряжение переключения первичной обмотки трансформатора Т1 осуществляется с помощью переменного транзистора N-MOSFET Q8 и Q9.

Конденсатор C10 и первичная обмотка трансформатора тока T3 расположены последовательно с первичной обмоткой. Конденсатор связи не нужен для функционирования схемы, но он играет очень важную роль — защищает от несбалансированного потребления энергии от входных конденсаторов и, следовательно, перед зарядкой одного из них до более чем 200 В. Трансформатор тока Т3, также расположенный последовательно с первичной обмоткой, действует как защита от короткого замыкания. Трансформатор тока обеспечивает гальваническую развязку и позволяет измерять величину тока, уменьшенную до точности ее передачи. Его задача — информировать контроллер о величине тока, протекающего через первичную обмотку T1.

Параллельно с первичной обмоткой основного трансформатора имеется так называемая схема гашения импульсов, которую образуют C13 и R18. Она подавляет всплески напряжения, возбуждаемые при переключении силовых транзисторов. Они не опасны для МОП-транзисторов, поскольку их встроенные диоды эффективно защищают от перенапряжения на стоках. Однако всплески напряжения могут отрицательно влиять на эффективность инвертора, поэтому важно их устранить.

Силовые МОП-транзисторы не могут управляться напрямую от контроллера из-за изменения потенциала верхнего транзисторного источника. Транзисторы управляются с помощью специального трансформатора Т2. Это обычный импульсный трансформатор, работающий в двухтактном режиме, открывающий силовые транзисторы. Управляющий трансформатор Т2 имеет на входе набор элементов управления напряжением на обмотках, которые помимо генерирования напряжения, продиктованного контроллером, защищают от возникновения размагничивающего напряжения сердечника. Неконтролируемое напряжение размагничивания удерживало бы транзистор открытым. Элементами, непосредственно ответственными за устранение напряжения размагничивания, являются диоды D7 и D9, а также транзисторы Q3 и Q5. Во время простоя, когда оба МОП-транзистора закрыты, ток протекает через D7 и Q5 (или D9 и Q3) и поддерживает напряжение размагничивания около 1,4 В. Это напряжение безопасно и не может открыть силовой транзистор.

Осциллограмма напряжения на входах MOSFET:

На осциллограмме можно четко видеть момент, когда сердечник ​​перестает размагничиваться диодами D7 и D8 (D6 и D9) и начинает намагничиваться в противоположном направлении транзисторами Q3 и Q4 (Q2 и Q5). В фазе размагничивания сердечника напряжение на затворе Т2 достигает 18 В, а на фазе намагничивания оно падает примерно до 14 В.
Почему не использован один из драйверов типа IR? Прежде всего управляющий трансформатор более надежный, более предсказуемый. IR-драйверы очень капризны и подвержены ошибкам.

На вторичной обмотке основного трансформатора Т1 генерируется переменное напряжение, поэтому необходимо его выпрямить. Роль выпрямителя играют выпрямительные фаст диоды, генерирующие симметричное напряжение. Выходные дроссели расположены за диодами — их присутствие влияет на эффективность инвертора, подавляя всплески заряжающие выходные конденсаторы при включении одного из силовых транзисторов. Далее выходные конденсаторы с резисторами предварительной нагрузки, которые препятствуют подъёма напряжения до слишком высоких значений.

Контроллер импульсного ИП

Контроллер является основой инвертора, поэтому опишем его более подробно. В инверторе использован контроллер TL494 с установленной частотой работы такой же, как и в блоках питания ATX, то есть 30 кГц. Инвертор не имеет стабилизации выходного напряжения, поэтому контроллер работает с максимальным коэффициентом заполнения импульсов, который составляет 85%. Контроллер оснащен системой плавного пуска, состоящей из элементов C5 и R7. После запуска инвертора схема обеспечивает плавное увеличение коэффициента заполнения начиная с 0%, что устраняет всплеск зарядки выходных конденсаторов. TL494 может работать от 7 В, и такое напряжение, подающее буфер управляющего трансформатора Т2, вызывает генерацию напряжения на затворах порядка 3 В. Такие не полностью открытые транзисторы выдадут десятки вольт, что приведет к огромным потерям мощности и существует высокая вероятность превышения опасного предела. Чтобы предотвратить это, сделана защита от слишком высокого падения напряжения. Она состоит из резисторного делителя R4 — R5 и транзистора Q1. После того как напряжение падает до 14,1 В, Q1 разряжает конденсатор плавного пуска, тем самым уменьшая заполнение до 0%.

Другая функция контроллера — защитить инвертор от короткого замыкания. Информация о токе первичной обмотки получается контроллером через трансформатор тока Т3. Ток вторичной обмотки Т3 протекает через резистор R9, на котором падает небольшое напряжение. Информация о напряжении на R9 через потенциометр PR1 поступает на усилитель ошибки TL494 и сравнивается с напряжением резисторного делителя R1 и R2. Если контроллер распознает напряжение выше 1,6 В на потенциометре PR1, он закрывает транзисторы до того, как они пересекут опасный предел и фиксируется через D1 и R3. Силовые транзисторы остаются закрытыми до тех пор, пока инвертор не будет перезапущен. К сожалению, эта защита работает правильно только на линии +/- 35 В. Линия +/- 12 В намного слабее и в случае короткого замыкания может быть недостаточно тока, чтоб защита сработала.

Источник питания контроллера — безтрансформаторный с использованием сопротивления конденсатора. Два конденсатора C20 и C24 потребляют реактивную энергию от сети, и, следовательно, заставляя ток течь, они заряжают фильтрующий конденсатор C1 через выпрямитель D10-D13. Стабилитрон DZ1 защищает от слишком высокого напряжения на C1 и стабилизирует их при 18 В.

Импульсные трансформаторы в БП

Качество и производительность импульсного трансформатора влияют эффективность всего преобразователя и выходное напряжение. Однако трансформатор выполняет функцию не только преобразования электричества, но также обеспечивает гальваническую изоляцию от сети 220 В и, таким образом, оказывает большое влияние на безопасность.

Вот как правильно сделать такой трансформатор. Прежде всего должен быть ферритовый сердечник. Он не может иметь воздушный зазор, его половинки должны отлично соединяться друг с другом. Теоретически здесь можно использовать тороидальный сердечник, но сделать хорошую изоляцию и обмотку будет довольно нелегко.

Рекомендуем брать основной ETD34, ETD29 в крайнем случае, но тогда максимальная непрерывная мощность будет составлять не более 180 Вт. Они стоят немного, поэтому лучшим решением будет получить поврежденный блок питания ATX. На сгоревших источниках питания от ПК в дополнение ко всем необходимым трансформаторам содержится ещё много полезных элементов, в том числе сетевой фильтр, конденсаторы, диоды, а иногда и TL494 (KA7500).

Трансформаторы должны быть осторожно выпаяны с платы блока питания ATX, предпочтительно с помощью термофена. После распайки не пытайтесь разобрать трансформатор, потому что он ​​сломается. Трансформатор следует класть в воду и кипятить. После 5 минут нужно осторожно захватив половинки сердечника через ткань, разделить. Если они не хотят расходиться, не тяните сильно — сломаете! Положить обратно и варите еще 5 минут.

Процесс намотки основного трансформатора должен начинаться с подсчета количества провода, который будет намотан. Из-за постоянной рабочей частоты и заданной максимальной индукции, количество обмоток первички зависит только от площади поперечного сечения основного столба ферритового сердечника. Максимальная индукция ограничена 250 мТ из-за работы в полумостовом режиме — здесь асимметрия намагниченности проста.

Формула для вычисления числа витков:

n = 53 / Qr,

  • Qr — площадь поперечного сечения основного стержня сердечника, приведенного в см2.

Таким образом, для сердечника с поперечным сечением 0,5 см2 необходимо наматывать 106 витков, а для сердечника с поперечным сечением 1,5 см2 потребуется только 35. Помните, что не стоит наматывать половину витка — всегда округлите до одного в плюс. Расчет количества обмоток вторички такой же, как и для любого другого трансформатора — отношение выходного напряжения к входному напряжению в точности равно отношению количества вторичных обмоток к числу обмоток первички.

Следующий шаг — рассчитать толщину проводов обмоток. Самое важное, что следует учитывать при расчете толщины проводов, — это необходимость заполнить все окно ядра проволокой — от этого зависит магнитное соединение обмоток трансформатора, и, следовательно, падение выходного напряжения. Полное поперечное сечение всех проводов, проходящих через окно сердечника, должно составлять около 40-50% поперечного сечения основного окна (основное окно — место, где провод проходит через сердечник). Если вы впервые мотаете трансформатор, нужно приблизиться к этим 40%. В расчетах также должны учитываться токи, протекающие через поперечное сечение обмоток. Обычно плотность тока составляет 5 А / мм2, и это значение не стоит превышать, использование более низких плотностей тока является желательным. При моделировании ток первичной стороны составляет 220 Вт / 140 В = 1,6 А, поэтому сечение провода должно быть 0,32 мм2, значит его толщина составит 0,6 мм. На вторичной стороне ток 220 Вт / 54 В будет равен 4,1 А, что приводит к поперечному сечению 0,82 мм и реальной толщине провода 1 мм. В обоих случаях учитывалось максимальное падение напряжения при загрузке. Следует также помнить, что из-за скин-эффекта импульсных трансформаторов толщина провода ограничена рабочей частотой — в нашем случае на 30 кГц максимальная толщина провода составляет 0,9 мм. Вместо провода толщиной 1 мм лучше использовать два более тонких провода. После расчета количества катушек и проводов проверьте, соответствует ли расчетное заполнение медного окна 40-50%.

Первичная обмотка трансформатора должна быть размещена в двух частях. Первая часть первички (из 35 витков) мотается как первая, на пустой каркас. Необходимо сохранить направление обмотки к каркасу — вторая часть обмотки должна быть намотана в том же направлении. После намотки первой части необходимо припаять другой конец к переходному, укороченному штифту, который не входит в плату. Затем наложите 4 слоя изоляционной ленты на обмотку и намотайте всю вторичную обмотку — это означает метод намотки. Это улучшает симметрию обмоток. Следующая вторичная обмотка для напряжения +/- 12 В может быть намотана непосредственно на обмотку +/- 35 В в местах, где было сохранено небольшое количество свободного места, а затем полностью изолирована 4 слоями изоляционной ленты. Конечно также необходимо изолировать места, где концы обмоток приводятся к штифтам корпуса. В качестве последней обмотки намотайте вторую часть первичной обмотки, обязательно в том же направлении, что и предыдущий. После намотки можно изолировать последнюю обмотку, но не обязательно.

Когда обмотки готовы, сложите половинки сердечника. Лучшее и проверенное решение — это соединение изолентой с капелькой клея. Несколько раз обматываем сердечник изоляционной лентой.

Управляющий трансформатор сделан как и любой другой импульсный трансформатор. В качестве сердечника можно использовать небольшой EE / EI, полученный от блоков питания ATX. Также можете купить тороидальный сердечник TN-13 или TN-16. Количество обмоток зависит, как обычно, от поперечного сечения сердечника.

В случае тороидальных формула такая:

n = 8 / Qr,

  • где n — количество обмоток первичной обмотки,
  • Qr — площадь поперечного сечения сердечника, приведенная в см2.

Вторичные обмотки должны быть намотаны с таким же количеством витков, что и первичные, допускаются только незначительные отклонения. Поскольку трансформатор будет управлять только одной парой МОП-транзисторов, толщина провода не важна, его минимальная толщина составляет менее 0,1 мм. В этом случае 0,3 мм. Первая половина первичной обмотки должна быть намотана последовательно — изоляционный слой — первая вторичная обмотка — изоляционный слой — вторая вторичная обмотка — изоляционный слой — вторая половина первичной обмотки. Направление обмотки обмоток очень важно, здесь MOSFET-ы необходимо включать поочередно, а не одновременно. После намотки соединяем сердечник так же, как и в предыдущем трансформаторе.

Трансформатор тока похож на вышеуказанные. Количество катушек здесь произвольно, в принципе, достаточно количества обмоток вторичной обмотки:

n = 4 / Qr,

  • где n — количество обмоток вторичной обмотки,
  • Qr — площадь поперечного сечения окружности сердечника, приведенная в см2.

Но поскольку токи тут очень малы, лучше всегда использовать большее количество витков. С другой стороны, более важно поддерживать соответствующее соотношение количества витков обеих обмоток. Если решите изменить это соотношение, придется отрегулировать значение резистора R9.

Вот формула для вычисления R9 в зависимости от количества витков:

R9 = (0.9Ω * n2) / n1,

  • где n2 — количество обмоток вторичной обмотки,
  • n1 — количество обмоток первичной обмотки.

С изменением R9 также необходимо изменить C7 соответственно. Трансформатор тока легче наматывать на тороидальный сердечник, рекомендуем TN-13 или TN-16. Тем не менее, вы можете сделать трансформатор на Ш-сердечника. Если намотаете трансформатор на тороидальный сердечник, сначала намотайте вторичную обмотку большим количеством витков. Затем изоляционную ленту и, наконец, первичную обмотку проволокой толщиной 0.8 мм.

Описание элементов схемы

Почти все элементы можно найти в блоке питания ATX. Диоды D26-D29 с напряжением пробоя 400 В, но лучше взять немного выше, по меньшей мере 600 В. Готовый выпрямитель можно найти в блоке питания ATX. Диодные мосты для питания контроллера также целесообразно применять не менее 600 В. Но они могут быть дешевыми и популярными 1N4007 или похожими.

Стабилитрон, ограничивающий напряжение питания контроллера, должен выдерживать мощность 0,7 Вт, поэтому его номинальная мощность должна составлять 1 Вт или более.

Конденсаторы C18 и C19 могут использоваться с другой емкостью, но не менее 220 мкФ. Емкость более 470 мкФ также не должна использоваться из-за излишне увеличенного тока при включении инвертора в сеть и больших размеров — они могут просто не влезть на плату. Конденсаторы C18 и C19 также находятся в каждом блоке питания ATX.

Силовые транзисторы Q8 и Q9 — очень популярные IRF840, доступные в большинстве электронных магазинов по 30 рублей. В принципе, вы можете использовать другие МОП-транзисторы на 500 В, но это повлечет изменение резисторов R12 и R13. Установленные на 75 Ом обеспечивают время открытия / закрытия затвора около 1 мкс. В качестве альтернативы, их можно заменить либо на 68 — 82 Ома.

Буферы перед входами MOSFET и управляющим трансформатором I, на транзисторах BD135 / 136. Здесь могут использоваться любые другие транзисторы с напряжением пробоя выше 40 В, такие как BC639 / BC640 или 2SC945 / 2SA1015. Последний может быть выдран из блоков питания ATX, мониторов и т. д. Очень важным элементом инвертора является конденсатор C10. Это должен быть полипропиленовый конденсатор, адаптированный к большим импульсным токам. Такой конденсатор находится в блоках питания ATX. К сожалению, иногда он является причиной отказа источника питания, поэтому нужно тщательно его проверить прежде чем паять в схему.

Диоды D22-D25, которые выпрямляют напряжение +/- 35 В, использованы UF5408, подключенные параллельно, но лучшим решением было бы использовать одиночные диоды BY500 / 600, которые имеют более низкое напряжение падения и более высокий номинальный ток. Если возможно, эти диоды должны быть спаяны на длинных проводах — это улучшит их охлаждение.

Дроссели L3 и L4 намотаны на тороидальные порошковые сердечники из источников питания ATX — они характеризуются преобладающим желтым цветом и белой окраской. Достаточны сердечники диаметром 23 мм, 15-20 витков на каждом из них. Однако испытания показали, что они не нужны — инвертор работает и без них, достигает своей мощности, но транзисторы, диоды и конденсатор C10 становятся более горячие из-за импульсных токов. Дроссели L3 и L4 повышают эффективность инвертора и снижают частоту отказов.

Выпрямители D14-D17 +/- 12 В оказывают большое влияние на эффективность этой линии. Если эта линия будет питать предусилитель, дополнительные вентиляторы, дополнительный усилитель для наушников и, например, индикатор уровня, диоды должны использоваться по крайней мере на 1 A. Однако, если линия +/- 12 В будет питать только предусилитель, который тянет до 80 мА, даже можно использовать тут 1N4148. Дроссели L1 и L2 практически не нужны, но их присутствие улучшает фильтрацию помех от электросети. В крайнем случае вместо них можно использовать резисторы на 4,7 Ом.

Ограничители напряжения R22 и R23 могут состоять из серии силовых резисторов, соединенных последовательно или параллельно, чтобы получить один резистор с более высокой мощностью и соответствующее сопротивление.

Запуск и настройка инвертора

После травления плат начните сборку элементов, начиная от самых маленьких до самых больших. Необходимо припаять все компоненты, кроме дросселя L5. После завершения сборки и проверки платы установите потенциометр PR1 в крайнее левое положение и подключите сетевое напряжение к разъему INPUT 220 В. На конденсаторе C1 должно присутствовать напряжение 18 В. Если напряжение останавливается примерно на уровне 14 В, это означает проблему управления трансформатором или силовыми транзисторами, то есть короткое замыкание в цепи управления. Владельцы осциллографа могут проверить напряжение на транзисторных затворах. Если контроллер работает правильно, проверьте правильность переключения MOSFET.

После включения питания 12 В и источника питания контроллера на линии +/- 35 В должно появиться +/- 2 В. Такое дело означает, что транзисторы контролируются должным образом, поочередно. Если лампочка на блоке питания 12 В была включена и на выходе не было напряжения, это означало бы, что оба силовых транзистора открываются одновременно. В этом случае управляющий трансформатор должен быть отсоединен, а провода одной из вторичных обмоток трансформатора должны быть поменяны. Далее припаять трансформатор назад и повторить попытку с источником питания 12 В и лампой.
Если тест пройдет успешно и получим на выходе +/- 2 В, можно отключить источник питания лампы и припаять индуктивность L5. С этого момента инвертор должен работать от сети 220 В через лампу на 60 Вт. После подключения к сети лампочка должна кратковременно мигнуть и немедленно полностью отключиться. На выходе должно появиться +/- 35 и +/- 12 В (или другое напряжение в зависимости от соотношения оборотов трансформатора).

Загрузить их небольшой мощностью (например от электронной нагрузки) для тестирования и лампочка на входе начнет немного светиться. После этого теста нужно переключить инвертор непосредственно на сеть, а на линию +/- 35 В подключить нагрузку с сопротивлением около 20 Ом для проверки мощности. PR1 следует отрегулировать так, чтоб инвертор не отключается после зарядки нагревателя. Когда инвертор начнет нагреваться, вы можете проверить падение напряжения на линии +/- 35 В и рассчитать выходную мощность. Для проверки силовой мощности инвертора достаточно 5-10-минутного теста. За это время все компоненты инвертора смогут нагреться до их номинальной температуры. Стоит измерить температуру радиатора MOSFET, она не должна превышать 60C при температуре окружающей среды 25C. Наконец, необходимо нагрузить инвертор усилителем и установить потенциометр PR1 как можно больше влево, но чтобы инвертор не выключался.

Инвертор может быть адаптирован к любым потребностям по питанию различных УМЗЧ. При проектировании пластины старались, чтобы она была как можно более универсальной, для монтажа различных типов элементов. Расположение трансформатора и конденсаторов позволяет монтировать довольно большой радиатор МОП-транзисторов по всей длине платы. После надлежащего изгиба выводов диодных мостов, их можно установить в металлический корпус. Увеличение теплоотвода позволяет увеличить мощность преобразователя теоретически до 400 Вт. Затем необходимо использовать трансформатор на ETD39. Для этого изменения конденсаторы C18 и C19 требуются на 470 мкФ, C10 на 1.5-2.2 мкФ и использование 8 диодов BY500.

Поделиться: