Датчик положения дроссельной заслонки: характеристика, принцип работы. Признаки неисправности датчика дроссельной заслонки Контакты датчика положения дроссельной заслонки

Все современные автомобили имеют в своей конструкции множество электротехнических и электронных устройств. С их помощью осуществляется контроль и автоматическая настройка параметров функционирования различных узлов, агрегатов и систем. Они могут быть очень сложными и дорогими, как, к примеру, электронный блок управления двигателем (ЭБУ), так и совсем простенькими. Примечательно, что многие «мелочи», стоимость которых совсем невелика, играют на практике весьма важную практическую роль. К примеру, если обнаруживаются признаки неисправности датчика положения дроссельной заслонки, то если оставить их без внимания, скорый и весьма дорогостоящий ремонт силового агрегата практически обеспечен.

За что отвечает датчик положения дроссельной заслонки

Такая деталь, как предназначена для того, чтобы передавать в электронный блок управления двигателем информацию о том, в каком именно состоянии в данный конкретный момент времени находится пропускной клапан. По сути дела, он представляет собой комбинацию постоянного и переменного резистора, а его максимальное суммарное сопротивление равняется приблизительно 8 Ом. ДПДЗ имеет в своей конструкции три контакта, причем на два из них подается напряжение (обычно его величина составляет около 5 В), а третий является сигнальным и связан с соответствующим контроллером.

Датчик положения дроссельной заслонки производства GM

Датчик положения дроссельной заслонки устанавливается на ее корпусе и реагирует на вращение оси, когда она или открывается, или закрывается. Соответственно, меняется и его сопротивление: если заслонка полностью открыта, то напряжение на сигнальном контакте составляет как минимум 4 B, а если полностью закрыта - то максимум 0,7 В. За всеми изменениями напряжения следит контроллер, в результате чего регулируется количество топлива, поступающего для формирования воздушно-топливной смеси.

Если ДПДЗ работает некорректно, то оно будет или меньше, или больше необходимого, что может привести (и зачастую действительно приводит) к различным нарушениям в работе силового агрегата, а порой даже к его выходу из строя. Следует также сказать, что неисправность датчика положения дроссельной заслонки довольно часто является причиной возникновения проблем с коробкой переключения передач. Ремонт и двигателя, и КПП - это весьма затратное мероприятие, так что если обнаруживаются признаки неисправности датчика положения дроссельной заслонки, то ее нужно обязательно проверить.

Симптомы неисправности датчика положения дроссельной заслонки

Датчик положения дроссельной заслонки в топливной системе играет «сглаживающую» роль, и поэтому если он исправен, то автомобиль едет без рывков, плавно, при нажатии на педаль газа демонстрирует «отзывчивость». Если же ДПДЗ неисправен, то это можно определить по следующим признакам:

  • Двигатель начинает плохо заводиться;
  • Существенно возрастает расход топлива;
  • Автомобиль едет «рывками»;
  • Серьезно возрастает количество оборотов двигателя на холостом ходу;
  • Когда автомобиль ускоряется, то это происходит с некоторой задержкой;
  • Из впускного коллектора раздаются «хлопающие» звуки;
  • Двигатель глохнет на холостом ходу;
  • Лампочка Check Ingine или горит постоянно, или загорается периодически.

Если проявляется хоть один из перечисленных выше признаков, то вполне вероятно, что ДПДЗ неисправен. Как показывает практика, в большинстве случаев поломка этой детали связана с ее естественным износом. Дело в том, что переменный резистор, имеющийся в конструкции датчика положения дроссельной заслонки, имеет напыленный слой основы, который металлический контакт, перемещающийся по нему, со временем истирает. Соответственно, ДПДЗ начинает выдавать неправильные данные.

Опытные специалисты утверждают, что самый верный признак того, что датчик положения дроссельной заслонки неисправен - это «плавание» оборотов силового агрегата в режиме холостого хода. Если такие симптомы обнаруживаются, то необходимо обратиться на станцию технического обслуживания, или же произвести диагностику самостоятельно.

Видео о признаках неисправности ДПДЗ

Как проверить датчик положения дроссельной заслонки

Сделать это несложно, причем из оборудования понадобится только мультиметр или вольтметр. Необходимо повернуть ключ в замке зажигания, и измерить значение напряжения между сигнальным контактом и «минусом». Оно должно быть не больше 0,7 В. После этого необходимо полностью открыть заслонку, и после этого снова произвести замер. Теперь значение должно составить более 4 В.

Как проверить ДПДЗ с помощью мультиметра

Далее требуется полностью включить зажигание и замерить напряжение между сигнальным и любым другим выводом ДПДЗ. Далее нужно медленно провернуть сектор, наблюдая за тем, как происходит изменение напряжения. Оно должно осуществляться плавно, без рывков. Если они имеются, то это симптом того, что датчик положения дроссельной заслонки неисправен.

К сожалению, в силу своей конструкции и особенностей повреждений датчики положения дроссельных заслонок относятся к неремонтопригодным деталям. Поэтому если выясняется, что ДПДЗ действительно неисправен, то его необходимо просто заменить на новый. При этом рекомендуется выбирать не устаревшую пленочно-резистивную, а современную бесконтактную модель. Она отличается тем, что функционирует по принципу магнитного эффекта, состоит из таких частей, как магнит, ротор и статор, и не имеет в своей конструкции трущихся друг о друга деталей.

Современный мир трудно представить без электроники. Трудно представить и без автомобилей – некоторые люди даже в ближайший магазин едут на личном транспорте, хотя пешком до него идти несколько шагов. Так вот, и электроника в автомобиле заняла прочное место в наше время.

Электронные узлы нашли применение во всех системах легковых машин. Сиденья с электро управлением, электро усилитель руля, коробка передач вариатор, которая управляется электроникой. Про стеклоподъемники, люки, зеркала и прочую атрибутику и говорить нечего – освоено электроникой давно.

Электроника добралась и до сердца автомобиля - до его мотора. Сейчас уже практически не остается карбюраторных двигателей. Ни один современный автомобиль, сошедший с конвейера, не обходится без электронного блока управления двигателем (ЭБУ). С помощью различных датчиков блок следит за состоянием мотора и управляет им, согласно полученным данным. О всех неисправностях датчиков сигнализирует контрольная лампа Check Ingine, которая находится в салоне автомобиля. Неисправность самого электронного блока доставляет владельцу авто немало неприятностей – ремонтировать его сложно, а замена порой стоит немалых денег, ЭБУ в основном довольно дорогие.

Соответственно, в электрике двигателя присутствуют различные датчики. Рассмотрим датчик положения дроссельной заслонки – для чего он нужен, что собой представляет, какие бывают признаки неисправности датчика, и как его можно проверить на пригодность.

Датчик дроссельной заслонки

Датчик положения дроссельной заслонки (ДПДЗ) нашел свое применение в бензиновых двигателях инжекторного типа или типа моновпрыск. Последнее время такой датчик присутствует и в дизельных моторах. Датчик непосредственно связан с осью заслонки дроссельного узла, и выполняет функцию переменного резистора (потенциометра). Нередко ДПДЗ еще называют потенциометром заслонки. Сопротивление меняется в зависимости от степени открытия заслонки дроссельного узла, которая управляется педалью газа. Наименьшее значение сопротивления будет при закрытом дросселе, то есть, педаль газа не нажата.

Напряжение на ДПДЗ прямо пропорционально сопротивлению, при полностью открытой заслонке оно имеет максимальное значение на сигнальном контакте датчика. Электронная система управления, получающая сигнал от ДПДЗ, разрешит подать топливной системе наибольшую порцию горючего при максимальном напряжении сигнального контакта ДПДЗ.

Кстати, у датчика дроссельной заслонки в разъеме имеются три контакта – минусовой, плюсовой и сигнальный.

ДПДЗ может быть другого типа – вместо переменного резистора применяется магниторезистивный датчик. Такой датчик имеет элемент с магниторезистивным покрытием и постоянного магнита, который связан с осью заслонки дросселя. Принцип работы основан на изменении магнитного поля между этими элементами. При перемещении постоянного магнита меняется сопротивление магниторезистивного элемента. Электронный блок управления с устройством работает по такой же схеме, что и с потенциометром дроссельной заслонки.

Неисправности датчика положения дроссельной заслонки

ДПДЗ в топливной системе двигателя играет сглаживающую роль - позволяет ехать автомобилю плавно, без рывков, а при резком ускорении улучшает приемистость двигателя, придавая педали газа отзывчивость на нажатие.

Характерные признаки неисправности датчика положения дроссельной заслонки:

  • - машина едет рывками, идет периодическое дергание на ходу,
  • - увеличивается расход топлива,
  • - двигатель плохо заводится,
  • - повышенные холостые обороты двигателя,
  • - временами загорается или постоянно горит сигнальная лампа Check Ingine в салоне автомобиля,
  • - при разгоне автомобиля происходят задержки в ускорении,
  • - двигатель глохнет во время работы на холостом ходу,
  • - во впускном коллекторе раздаются хлопки.

Если компьютерная диагностика еще не проводилась и код ошибки не установлен, не стоит спешить с выводами. По таким признакам причиной неисправности может быть и другое устройство, а не только датчик положения дроссельной заслонки. Допустим, неисправен регулятор холостого хода или датчик массового расхода воздуха, возможен подсос воздуха через саму дроссельную заслонку.

Основной причиной неисправности датчика заслонки является обрыв или загрязнение резистивной дорожки. Проверить ДПДЗ нетрудно, имея под рукой цифровой мультиметр. На включенном зажигании медленно поворачиваем рукой дроссельную заслонку и на сигнальном контакте следим за напряжением - оно должно также медленно равномерно меняться. Если дорожка на потенциометре оборвана, напряжение пропадет или резко изменится. По такому же принципу проверяется магниторезистивный датчик.


Ранее мы писали о симптомах, которые могут проявляться при поломке датчика положения дроссельной заслонки. Но такие признаки нередко вызывают и поломки других датчиков или компонентов двигателя. Поэтому перед покупкой нового ДПДЗ имеющийся датчик необходимо проверить на работоспособность.

ДПДЗ установлен на корпусе дроссельной заслонки. Этот датчик содержит резистор переменного сопротивления (или контактные точки, в зависимости от модели), который передает сигнал в электронный блок управления двигателем. Показания датчика зависят от положения дроссельной заслонки.

Когда водитель нажимает на педаль газа, заслонка вращается, увеличивая приток воздуха во впускной коллектор. При работающем моторе положение заслонки (и данные с других датчиков) сообщает компьютеру, сколько топлива нужно двигателю в определенный момент.

Поэтому, без правильного сигнала, поступающего от ДПДЗ, возникают проблемы с топливно-воздушной смесью. Отметим, что проверить датчик положения дроссельной заслонки не очень сложно. Вам понадобится информация о заводских параметрах работы датчика, после чего его проверяют с помощью цифрового мультиметра.

Купить мультиметр можно во многих магазинах, этот простейший диагностический прибор пригодится вам ещё не раз.

Самая распространенная неисправность датчика дроссельной заслонки – износ, короткое замыкание или обрыв в электрической цепи либо резисторе. С помощью этой статьи вы сможете понять, как проверить ДПДЗ мультиметром лишь за несколько минут. Это поможет понять, нуждается ли элемент в замене или проблема не в нём.

Симптомы неисправности ДПДЗ:

  • бедная или богатая топливная смесь;
  • проблемы с зажиганием;
  • неправильные сигналы для других исполнительных механизмов;
  • неровный холостой ход;
  • провалы при разгоне;
  • подергивание;
  • остановка двигателя.

Методы диагностики ДПДЗ

Самый распространенный тест датчика – измерение сопротивления или напряжения в различных положениях дроссельной заслонки (закрытое, полуоткрытое и полностью открытое). Мы будем выполнять тестирование, используя функцию измерения напряжения.

  1. Откройте капот и снимите узел воздушного фильтра в том месте, где он соединяется с корпусом дроссельной заслонки.
  2. Осмотрите пластину дроссельной заслонки и стенки корпуса дроссельной заслонки, расположенные вокруг неё.

* Если вы видите нагар на стенках или под пластиной заслонки, выполните очистку этого узла с помощью очистителя карбюраторов (карбклинера) и чистой ветоши. Поверхность должна быть полностью чистой. Нагар и грязь могут препятствовать закрытию дроссельной заслонки и её свободному перемещению.

  1. Найдите ДПДЗ, установленный на боковой части корпуса дроссельной заслонки. Датчик выполнен в виде небольшого пластикового блока с трехжильным разъемом.

Подключен ли ваш ДПДЗ к «земле»?

  1. Аккуратно отсоедините электрический разъем от датчика положения дроссельной заслонки.
  2. Проверьте разъем и клемму на наличие загрязнений и повреждений.
  3. Установите мультиметр в подходящий режим, к примеру, 20V на шкале постоянного напряжения (DCV).
  4. Подключите красный щуп мультиметра к плюсовой клемме аккумулятора, обозначенной символом «+».
  5. Прикоснитесь черным щупом мультиметра к каждому из трех электрических контактов разъема проводки, который подключается к ДПДЗ.

* Один из контактов, при прикосновении к которому на экране мультиметра появляется напряжение около 12 вольт, является контактом заземления. Обратите внимание на цвет этого провода.

* Если ни один из контактов не отображает 12 вольт, это является признаком дефекта проводки, которая идёт к датчику положения дроссельной заслонки. Датчик не имеет заземления, поэтому он не может правильно работать. В такой ситуации нужно решать проблему с проводкой.

  1. Выключите зажигание.

Подключен ли ДПДЗ к источнику опорного напряжения?

  1. Теперь подключите черный щуп мультиметра к контакту заземления на разъеме ДПДЗ, который вы только что идентифицировали.
  2. Поверните ключ зажигания в положение ON, но не запускайте двигатель.
  3. Подключите красный щуп мультиметра к каждому из двух других контактов разъема.
  4. На одном из контактов напряжение должно составлять около 5 вольт. Этот контакт передаёт опорное напряжение на ДПДЗ. Обратите внимание на цвет провода, подключенного к этому контакту. Третий провод является сигнальным.

* Если ни на одном из двух контактов разъема не будет 5 вольт, в проводке есть проблема, которую необходимо исправить. Проверьте электрическую цепь на наличие плохих контактов или поврежденных проводов.

  1. Выключите зажигание.
  2. Вставьте электрический разъем в ДПДЗ.


Выдает ли датчик положения дроссельной заслонки правильный сигнал?

  1. Для выполнения такой проверки необходимо использовать пару штырьков или скрепок.
  2. Подключите красный щуп тестера к сигнальному проводу датчика, а черный – к проводу заземления.
  3. Включите зажигание, но не запускайте двигатель.
  4. Убедитесь в том, что дроссельная заслонка полностью закрыта.
  5. Ваш мультиметр должен отображать значение в диапазоне 0,2-1,5 вольт или около этого, в зависимости от конкретного автомобиля. Если на экране вы видите ноль, убедитесь, что вы выбрали правильный режим прибора – обычно оптимальным является 10 или 20 вольт. Если на экране все ещё виднеется ноль, продолжайте проверку.
  6. Постепенно открывайте дроссельную заслонку, пока она не будет полностью открыта (или же ваш помощник может постепенно нажимать педаль газа до упора).

* При полностью открытой дроссельной заслонке на мультиметре должно отображаться около 5 вольт.

* Убедитесь в том, что напряжение постепенно увеличивается, когда вы медленно открываете дроссельную заслонку.

* Если вы заметили, что в определенных положениях заслонки есть скачки напряжения или оно зависает на одном уровне, ваш ДПДЗ не работает правильным образом, поэтому его необходимо заменить.

* Если датчик положения дроссельной заслонки не достигает напряжения в 5 вольт или около этого (в некоторых автомобилях – 3,5В) при полностью открытой заслонке, его надо менять.

  1. Выключите зажигание и снимите штырьки (скрепки).

Если на вашем автомобиле установлен регулируемый датчик положения дроссельной заслонки (они встречаются на старых моделях), и его показания не соответствуют норме, попробуйте сначала отрегулировать его. Датчик подлежит регулировке, если вы можете ослабить болты его крепления и повернуть элемент влево или вправо.

Регулировка датчика положения дроссельной заслонки

Этот способ подходит для настройки внешнего датчика. Следующие советы дадут вам общее представление о процедуре регулировки ДПДЗ.

  1. Ослабьте крепежные болты датчика так, чтобы вы могли вращать его, слегка постукивая по нему рукояткой отвертки.
  2. Оттяните датчик для проверки напряжения с помощью мультиметра.
  3. Поверните ключ зажигания в положение ON, но не запускайте двигатель.
  4. Удерживайте дроссельную заслонку в закрытом положении (или в положении, указанном в руководстве по ремонту или обслуживанию вашего автомобиля).
  5. Убедитесь, что напряжение соответствует указанному в руководстве. Если нет, поверните датчик влево или вправо, пока не получите заданное напряжение.
  6. Удерживайте ДПДЗ в этом положении и затяните крепежные винты.

Если датчик не поддаётся регулировке и не достигает требуемого напряжения, замените его.

Информация о том, как проверить датчик дроссельной заслонки, может сэкономить ваше время и поможет избежать ненужной замены компонентов. С помощью простого теста вы сможете быстрее вернуть свой автомобиль в строй. Такая проверка легко выполняется всего за несколько минут.

Дроссельная заслонка – один из ключевых компонентов, который отвечает за работу двигателя автомобиля. Она является частью впускной системы, и от ее правильной работы зависит количество воздуха, которое поступит в камеру сгорания, где он детонирует после смешивания с бензином.

Чтобы процесс детонации был максимально эффективным, электронный блок управления автомобиля должен контролировать время открытия дроссельной заслонки, тем самым впуская столько воздуха, сколько потребуется для образования идеальной смеси в конкретный момент времени. За информацию о том, в каком положении находится дроссельная заслонка, отвечает соответствующий датчик. При его выходе из строя водителя ожидают неприятности, которые могут привести к поломке деталей двигателя.

Виды датчиков положения дроссельной заслонки (ДПДЗ)


В зависимости от типа конструкции можно разделить датчики положения дроссельной заслонки на следующие виды:

  • Пленочно-резистивные. Простые варианты потенциометров, и они способны проработать около 50 тысяч километров до выхода из строя;
  • Магниторезистивные или бесконтактные. Их принцип работы основан на эффекте Холла, а стоимость подобных датчиков гораздо выше, чем пленочно-резистивных вариантов. При этом ресурс датчика зависит только от качества исполнения механических элементов, и они способны работать более 100 тысяч километров.

Устанавливается ДПДЗ, в большинстве случаев, на корпусе дроссельной заслонки со стороны противоположной приводу воздушной заслонки. Подвижный элемент датчика имеет механическую связь с осью заслонки.

Симптомы выхода из строя датчика положения дроссельной заслонки

Независимо от типа датчика, определить его неисправность можно по следующим признакам:


Если на автомобиле проявляются перечисленные выше неисправности и горит лампочка Check Engine, велика вероятность, что вышел из строя именно датчик положения дроссельной заслонки. При этом важно отметить, лампочка «Проверьте двигатель» включается при неисправности датчика положения дроссельной заслонки не на всех автомобилях.

Основные причины неисправностей

В зависимости от того, какой тип датчика используется на автомобиле, можно выделить основные проблемы, которым они подвержены.

Бюджетные пленочно-резистивные датчики положения дроссельной заслонки чаще всего выходят из строя по причине износа резистивного слоя механическим путем. Так при работе может быть изношен движок датчика. Еще одной распространенной причиной выхода из строя пленочно-резистивного варианта датчика является попадание на него грязи, которая приводит в негодность рабочую поверхность.

Бесконтактные ДПДЗ чаще всего выходят из строя по причине механической поломки движущегося узла. Также среди типичных «болезней» можно выделить неисправности в работе электронного преобразователя получаемых магнитных сигналов в постоянное напряжение.

Как проверить датчик положения дроссельной заслонки

Проверка датчика положения дроссельной заслонки требует наличия мультиметра. В зависимости от типа датчика и автомобиля, на котором он установлен, будут варьироваться приведенные в инструкции ниже значения напряжения и сопротивления, снимаемого с датчика. При этом кардинально процесс проверки ДПДЗ отличаться на различных моделях автомобилей и датчиков не будет.

Чтобы проверить датчик положения дроссельной заслонки, выполните следующие действия:


Как отмечалось выше, цифры измерений могут варьироваться, в зависимости от модели датчика и автомобиля. Посмотреть результаты для конкретной машины можно в техническом руководстве к ней или на специализированных форумах в интернете.

Если в результате диагностики был сделан вывод о неисправности датчика, его потребуется заменить.

Как заменить датчик положения дроссельной заслонки

Процесс замены датчика положения дроссельной заслонки состоит из трех этапов: снятие старого датчика, установка нового и сброс ошибки о неисправной работе устройства из памяти электронного блок управления. Чтобы заменить ДПДЗ, необходимо выполнить следующие действия:


Следует отметить, что некоторые современные датчики требуется не только заменить, но и отрегулировать. Например, в машинах компании АвтоВАЗ регулировка датчика положения дроссельной заслонки не требуется, но во многих иномарках она необходима.

Как отрегулировать датчик положения дроссельной заслонки

Регулировка ДПДЗ выполняется следующим образом:


Если после выполнения регулировки возникают проблемы с холостыми оборотами (завышены), потребуется провести процедуру обучения электронного блока управления автомобиля параметрам нового датчика.

Датчик положения дроссельной заслонки расположен на корпусе узла дроссельной заслонки. Служит для измерения степени открытия дроссельной заслонки.

Датчик положения дроссельной заслонки.

Чувствительный элемент датчика положения дроссельной заслонки представляет собой потенциометр, ось которого жёстко связана с осью дроссельной заслонки. На питающие выводы потенциометра подается опорное напряжение +5 V и "масса", а подвижный контакт датчика является сигнальным. Выходной сигнал датчика положения дроссельной заслонки является одним из базовых для расчёта блоком управления двигателем необходимого количества топлива, для определения текущего режима работы двигателя и для расчёта оптимального угла опережения зажигания. Например, в режиме пуска двигателя количество подаваемого топлива рассчитывается по температуре двигателя , по степени открытия дроссельной заслонки и по фактической частоте вращения коленвала. На работающем двигателе при закрытой дроссельной заслонке блок управления двигателем переходит в режим стабилизации частоты вращения коленчатого вала двигателя - режим поддержания холостого хода. Заданная частота вращения коленвала при этом зависит от температуры охлаждающей жидкости, от нагрузки на двигатель и от скорости движения автомобиля и регулируется путём изменения степени открытия регулятора холостого хода и изменения угла опережения зажигания. Для устранения "провала" запаздывания набора оборотов в момент резкого открытия дроссельной заслонки, блок управления двигателем кратковременно подает дополнительную порцию топлива. Если дроссельная заслонка открыта более чем на ~70 %, блок управления двигателем переходит в режим полной нагрузки, обеспечивая максимальную мощность двигателя путём приготовления несколько обогащённой топливовоздушной смеси. Когда при движении автомобиля дроссельная заслонка резко закрывается, блок управления двигателем активирует режим принудительного холостого хода (или режим торможения двигателем) путём полного прекращения подачи топлива до тех пор, пока обороты двигателя не снизятся до определенной величины. Остальные относительно стационарные положения дроссельной заслонки между режимом "поддержки холостого хода" и "полной нагрузки", называются режимом "частичной нагрузки" двигателя. В этом режиме блок управления двигателем поддерживает оптимальное соотношение топливно-воздушной смеси близкой к 1:14,7, за счет использования сигнала обратной связи от кислородных датчиков.

Проверка выходного сигнала датчика положения дроссельной заслонки.

Диагностика датчика положения дроссельной заслонки потенциометрического типа заключается в проверке соответствия выходного напряжения датчика фактическому положению дроссельной заслонки во всём диапазоне её возможных положений. Для просмотра осциллограммы напряжения выходного сигнала датчика, разъём осциллографического щупа должен быть подключен к любому из аналоговых входов № 14 USB Autoscope II, чёрный зажим типа "крокодил" осциллографического щупа должен быть подсоединён к "массе" двигателя диагностируемого автомобиля, пробник щупа должен быть подсоединён параллельно сигнальному выводу датчика.

Схема подключения к датчику положения дроссельной заслонки потенциометрического типа.

  1. точка подключения чёрного зажима типа "крокодил" осциллографического щупа.
  2. точка подключения пробника осциллографического щупа.

В окне программы "USB Осциллограф", необходимо выбрать подходящий режим отображения, в данном случае "Управление => Загрузить настройки пользователя => Potentiometer". Проверка датчика проводится при включенном зажигании и остановленном двигателе. Осциллограмма напряжения выходного сигнала датчика должна быть записана. Для включения записи осциллограммы, в окне программы "USB Осциллограф", необходимо выбрать "Управление => Запись" после выбора режима "Potentiometer" и включения зажигания. После включения записи осциллограммы, необходимо как можно более плавно открыть дроссельную заслонку до её полного открытия, после чего так же плавно её закрыть. Далее, для остановки записи осциллограммы, в окне программы "USB Осциллограф", необходимо выбрать "Управление => Запись". После завершения записи, записанную осциллограмму можно детально изучить. При закрытой дроссельной заслонке, значение напряжения выходного сигнала датчика его положения должно находиться в определённом диапазоне, чаще всего - 0,25... 0,75 V. Как только дроссельная заслонка начинает плавно открываться, значение напряжения выходного сигнала датчика так же должно плавно увеличиваться синхронно увеличению угла открытия дроссельной заслонки.

Осциллограмма напряжения выходного сигнала исправного датчика положения дроссельной заслонки. Зажигание включено, двигатель остановлен, плавное открытие дроссельной заслонки и быстрое её закрытие.

Когда дроссельная заслонка открыта полностью, значение напряжения выходного сигнала датчика должно находиться в диапазоне обычно 3,9.. .4,7 V. В некоторых системах управления двигателем применяются датчики положения дроссельной заслонки потенциометрического типа с инверсной выходной характеристикой. При закрытой дроссельной заслонке выходное напряжение датчика высокое, а при открытой - низкое. Во многих системах управления двигателем, где положение дроссельной заслонки задаётся при помощи электропривода (во всём диапазоне возможных положений, либо только в режиме холостого хода), текущее положение дроссельной заслонки определяется при помощи сразу двух потенциометров, конструктивно объединённых. Один из потенциометров имеет прямую выходную характеристику, а другой потенциометр обычно имеет инверсную выходную характеристику. Кроме того, многие узлы дроссельных заслонок со встроенным электроприводом зачастую дополнительно оснащены концевым микро-выключателем холостого хода, срабатывающим тогда, когда педаль акселератора отпущена водителем полностью.

Осциллограммы напряжения выходных сигналов исправного спаренного датчика положения дроссельной заслонки системы управления двигателем с электронным приводом дроссельной заслонки. Зажигание включено, двигатель остановлен, открытие дроссельной заслонки, закрытие дроссельной заслонки.

сигнала потенциометра, имеющего

  1. Осциллограмма напряжения выходного инверсную выходную характеристику.
  2. Осциллограмма напряжения выходного сигнала потенциометра, имеющего прямую выходную характеристику.
  1. A: случае соответствует напряжению выходного сигнала потенциометра, имеющего инверсную выходную характеристику при закрытой дроссельной заслонке и равно ~4 V.
  2. A: Значение напряжения в момент времени указанный маркером. В данном случае соответствует напряжению выходного сигнала потенциометра, имеющего прямую выходную характеристику при закрытой дроссельной заслонке и равно ~890 mV.

Наличие двух потенциометров в датчике положения дроссельной заслонки служит для повышения точности измерения текущего положения дроссельной заслонки, для точного распознавания блоком управления неисправностей датчика, а так же для повышения надёжности узла дроссельной заслонки - при выходе из строя одного из потенциометров блок управления двигателем определяет текущее положение дроссельной заслонки по сигналу от исправного потенциометра. Встречаются спаренные потенциометрические датчики положения дроссельной заслонки, где оба потенциометра имеют прямую выходную характеристику. Выходной сигнал одного потенциометра изменяется в диапазоне положений дроссельной заслонки от "полностью закрыто", до "частично открыто" (для системы управления двигателем BOSCH MONO Motronic этот диапазон составляет от 0% до 30%). Выходной сигнал другого потенциометра изменяется в диапазоне положений дроссельной заслонки от "частично открыто" до "полностью открыто" (для системы управления двигателем BOSCH MONO Motronic этот диапазон составляет от 17% до 100%).

Осциллограммы напряжения выходных сигналов исправного спаренного датчика положения дроссельной заслонки системы управления двигателем BOSCH MONO Motronic. Зажигание включено, двигатель остановлен, открытие дроссельной заслонки, закрытие дроссельной заслонки.

  1. Осциллограмма напряжения выходного сигнала потенциометра, работающего в диапазоне положений дроссельной заслонки от "полностью закрыто", до "частично открыто".
  2. Осциллограмма напряжения выходного сигнала потенциометра, работающего в диапазоне положений дроссельной заслонки от "частично открыто" до "полностью открыто".

Такая конструкция датчика применяется для повышения точности измерения текущего положения дроссельной заслонки при малых углах её открытия. Высокая точность измерения текущего положения дроссельной заслонки в системе управления двигателем BOSCH MONO Motronic очень важна, так как данная система не оснащена ни датчиком абсолютного давления во впускном коллекторе, ни датчиком расхода воздуха. По этому, величина нагрузки на двигатель и соответствующее ей необходимое количество впрыскиваемого топлива определяются по скорости вращения коленвала, по величине открытия дроссельной заслонки, по температуре двигателя и по температуре входящего воздуха.

Типовые неисправности датчика положения дроссельной заслонки.

Подвижный контакт потенциометрического датчика механически перемещается по контактному резистивному слою датчика, что со временем может стать причиной разрушения этого контактного резистивного слоя. В таком случае, при некоторых положениях подвижного контакта датчика, значение выходного напряжения датчика может не соответствовать фактическому положению дроссельной заслонки.

Дорожка потенциометра с "протёртым" контактным резистивным слоем (на данной иллюстрации показан измерительный потенциометр датчика объёмного расхода воздуха).

Как только водитель устанавливает такое положение дроссельной заслонки, при котором ползунок потенциометра датчика заслонки попадает на участок с разрушенным контактным резистивным слоем, возникают резкие рывки в работе двигателя. Блок управления двигателем воспринимает изменения напряжения на дефектном участке как сигнал режима быстрого разгона двигателя, или режима отсечки подачи топлива. Характер влияния неисправности на работу системы управления двигателем зависит от того, на каких режимах работы двигателя, и при каких углах открытия дроссельной заслонки проявляется неисправность. Если показания датчика нарушаются при закрытой дроссельной заслонке, то это приводит к нестабильности оборотов холостого хода - после отпускания педали акселератора двигатель может заглохнуть, либо напротив, обороты холостого хода могут быть сильно завышенными. Если же показания датчика нарушаются при каком-либо другом положении дроссельной заслонки, это вызывает возникновение резких рывков в работе двигателя в моменты, когда дроссельная заслонка принимает положения, при которых проявляется несоответствие выходного сигнала датчика фактическому положению заслонки.

Осциллограмма напряжения выходного сигнала неисправного датчика положения дроссельной заслонки. Зажигание включено, двигатель остановлен, плавное открытие дроссельной заслонки, плавное закрытие дроссельной заслонки.

В большинстве случаев, несоответствие выходного сигнала датчика положения дроссельной заслонки фактическому углу открытия дроссельной заслонки имеет место при положении дроссельной заслонки "полностью закрыто" и "частично открыто", из-за чего нарушается работа двигателя в режиме холостого хода.

Осциллограмма напряжения выходного сигнала неисправного датчика дроссельной заслонки. Зажигание включено, двигатель остановлен, плавное положения открытие дроссельной заслонки.

В случае повреждения контактного резистивного слоя датчика во всём диапазоне положений дроссельной заслонки, характер работы двигателя становится непредсказуемым. Неисправности датчика, вызванные разрушением контактного резистивного слоя датчика, устраняются путём замены датчика положения дроссельной заслонки на новый. Другой типовой неисправностью датчика является повышенная зависимость выходного напряжения датчика от температуры его корпуса. Данная неисправность является следствием установки некачественного датчика положения дроссельной заслонки на этапе замены износившегося датчика на новый или ещё на этапе производства автомобиля. Проявляется данная неисправность после прогрева двигателя при полностью закрытой дроссельной заслонке как повышение частоты вращения двигателя на холостом ходу. Характерным признаком неисправности является возможность временного её устранения путём выключения и повторного пуска двигателя. В момент включения зажигания, блок управления двигателем фиксирует ("запоминает") текущее значение выходного напряжения датчика положения дроссельной заслонки и принимает его за напряжение, соответствующее полностью закрытой заслонке. После запуска двигателя это значение напряжения служит для блока управления двигателем признаком закрытой дроссельной заслонки, когда водитель полностью отпускает педаль акселератора. При совпадении выходного напряжения датчика со значением, зафиксированным во время включения зажигания, блок управления двигателем переходит в режим стабилизации частоты вращения двигателя на холостом ходу. Если температурная стабильность датчика не удовлетворительна, может возникнуть сбой в работе двигателя на холостом ходу. Например, в момент включения зажигания, когда двигатель холодный (корпус датчика положения дроссельной заслонки холодный) значение выходного напряжения рассматриваемого датчика равно 500 mV. Блок управления двигателем фиксирует это значение как соответствующее полностью закрытой дроссельной заслонке. В моменты, когда выходное напряжение датчика вновь совпадает с этим зафиксированным значением 500 mV, двигатель переходит в режим стабилизации оборотов холостого хода. По мере прогрева двигателя разогревается и корпус датчика, и если с увеличением температуры корпуса датчика его выходное напряжение так же увеличивается, то может наступить момент, когда при закрытой дроссельной заслонке напряжение выходного сигнала будет значительно превышать зафиксированное при включении зажигания значение, и будет равно, например, 550 mV. В таком случае, когда водитель полностью отпускает педаль акселератора, от датчика будет поступать напряжение 550 mV вместо 500 mV, что уже не будет соответствовать сигналу полностью закрытой дроссельной заслонки. Вследствие этого, блок управления двигателем уже не будет переходить в режим стабилизации оборотов холостого хода. Если же теперь водитель выключит зажигание, после чего вновь запустит двигатель, блок управления двигателем зафиксирует новое текущее значение напряжения датчика положения дроссельной заслонки 550 mV с уже разогретым корпусом и примет его за напряжение, соответствующее полностью закрытой дроссельной заслонки. Теперь, работа двигателя при закрытой дроссельной заслонке будет стабильна, пока температура корпуса датчика положения дроссельной заслонки вновь не измениться. Диагностика данной неисправности сводится к сравнению двух значений выходного напряжения датчика при полностью закрытой дроссельной заслонке. Первое значение необходимо измерить, когда температура корпуса датчика близка к текущему значению температуры воздуха (двигатель не работал на протяжении минимум 3-х часов). Второе значение необходимо измерить, когда двигатель будет полностью прогрет до рабочей температуры (электро-вентилятор системы охлаждения автоматически включится не менее трёх раз). Данная неисправность устраняется только путём замены некачественного датчика на качественный. В некоторых системах управления двигателем вместо датчиков положения потенциометрического типа применяются оптические датчики положения. Типовой неисправностью этих датчиков является проникновение и накопление загрязнений в полостях, где расположены оптические элементы и на самих оптических элементах. Устраняется данная неисправность путём очистки от загрязнений, но только в тех случаях, если конструкция датчика позволяет его разобрать и повторно собрать. В последнее время, в некоторых системах управления двигателем вместо датчиков положения потенциометрического типа применяются бесконтактные "линейные" датчики, работающие на эффекте Холла. Эти датчики лишены недостатков резистивного слоя, но при этом имеют "свои" типовые неисправности. Наиболее распространённым дефектом датчика положения дроссельной заслонки на эффекте Холла бывают зоны с нелинейной зависимостью изменения выходного напряжения датчика. На осциллограмме напряжения выходного сигнала при плавном открытии дроссельной заслонки данная неисправность проявляется как "Г-образная ступенька". Такая "ступенька" может перекрывать значительный диапазон возможных положений дроссельной заслонки. При плавном изменении положения дроссельной заслонки внутри такого диапазона значения напряжения выходного сигнала датчика не изменяются. Подобных ступенек на всём диапазоне возможных положений дроссельной заслонки может быть несколько.

Осциллограмма напряжения выходного сигнала неисправного датчика положения дроссельной заслонки работающего на эффекте Холла.

Устраняется данная неисправность только путём замены датчика на исправный.

Датчик крайних положений дроссельной заслонки Throttle Valve Switch.

В некоторых системах управления двигателем прежних лет применялись датчики крайних положений дроссельной заслонки на основе концевых микро-выключателей. Микро-выключатель "холостого хода" и микро-выключатель "полной нагрузки".

Датчик крайних положений дроссельной заслонки, измерительными элементами которого являются два микро-выключателя.

Каждый из концевых микро-выключателей может принимать одно из двух его возможных состояний - "замкнут" или "разомкнут". В зависимости от текущего состояния микро-выключателя, напряжение его выходного сигнала может принимать значение соответствующее либо низкому уровню сигнала (обычно это значение равно 0 V), либо соответствующее высокому уровню сигнала (обычно это значение равно 5 V, либо 12 V). Вследствие сравнительно быстрого механического износа, микро-выключатели датчика со временем могут перестать срабатывать, особенно часто данная неисправность случается с микро-выключателями холостого хода. Для устранения этого дефекта достаточно периодически вновь отрегулировать положение корпуса датчика относительно корпуса дроссельной заслонки так, чтобы микро-выключатель холостого хода изменял своё состояние сразу же после начала открытия дроссельной заслонки. Ещё одной распространённой неисправностью концевых микро-выключателей датчиков положения некоторых типов является образование микротрещин в области спайки выходных клемм выключателя с разъёмом датчика. Эта неисправность возникает на автомобилях со значительным пробегом, вследствие воздействия механических нагрузок в области спайки клемм выключателя с разъёмом датчика. Если конструкция датчика позволяет его разобрать и повторно собрать, эту неисправность можно устранить, не прибегая к замене датчика. Достаточно повторно пропаять при помощи паяльника выходные клеммы микро-выключателя в области спаивания с разъёмом датчика. Проверка исправности концевого микро-выключателя проводится путём измерения сопротивления датчика с помощью омметра. Сопротивление разомкнутого микровыключателя должно стремиться к бесконечности. Когда микро-выключатель замкнут, его сопротивление не должно превышать значения 1 Q . При этом дополнительно следует обратить внимание на стабильность сопротивления микро-выключателя в состоянии "замкнут" при нескольких его срабатываниях. После каждого переключения выключателя в состояние "замкнут" омметр должен показывать одно и то же значение сопротивления датчика с отклонениями не более 0,1 Q . Изменяющиеся значения сопротивления микровыключателя в состоянии "замкнут" могут быть признаком образования микротрещин в области спаивания выходных клемм выключателя с разъёмом датчика, либо признаком подгорания контактов датчика. Существуют датчики крайних положений дроссельной заслонки, выполненные по технологии, аналогичной технологии изготовления потенциометрических датчиков положения дроссельной заслонки - на основе резистивного слоя. Сопротивление такого датчика при его состоянии "замкнуто" может принимать значения от 0,1 Q до 10 kQ и более. Подобные датчики часто бывают конструктивно объединены в общем корпусе с датчиком положения дроссельной заслонки потенциометрического типа.

Датчик положения дроссельной заслонки потенциометрического типа со встроенным датчиком концевого положения, срабатывающим в положении заслонки "полностью закрыто".

Подобные датчики имеют обычно 4-х контактный разъём. Три клеммы разъёма соединены с датчиком положения дроссельной заслонки потенциометрического типа, четвёртая клемма разъёма соединяется с выводом датчика концевого положения дроссельной заслонки. Другой вывод датчика концевого положения дроссельной заслонки соединён с одной из питающих клемм датчика, обычно, с выводом "массы" датчика.

Поделиться: